目次

研究

燃焼時のCOガス発生の水蒸気による影響……………………守川時生……(1)
容器破口からの噴出水流について………………………………中久喜厚・亀井浅道……(9)
木材クリア火災の傾きに関する研究…………………………山下邦博……(19)
火災長変動のスペクトル分析……………………………………山下邦博……(27)
石油タンク隅角溶接部のき裂
発生に関する実験的考察……………………………………亀井浅道・秋山伸司……(37)
航空機客室火災のモデル化に関する研究(英文)
－航空機客室内における熱源、開口部の位置及び形状の
火災気流の流動性状に及ぼす影響－…………………………佐藤晃由……(47)
MEMOIR

Effect of Water Vapor on CO Evolution in Fire Conditions
.......... Tokio Morikawa... (1)

Flow Properties of Water Discharged from a Vessel Opening
.......... Atsushi Nakakuki and Asamichi Kamei (9)

Experimental Investigation of Bending of Wooden Crib Flames
.......... Kunihiro Yamashita... (19)

Spectral Analysis of the Fluctuations of Flame Lengths
.......... Kunihiro Yamashita .. (27)

Experimental Study on the Crack Initiation along
the Toe of the Fillet Welded Joint of Oil Storage
Tanks Subjected to Cyclic Loading
.......... Asamichi Kamei and Shinji Akiyama (37)

An Approach to Modeling of Aircraft Cabin Fire Phenomena
– The Ventilation Effect of Location and Geometry of
the Heat Source and Opening in an Aircraft
Passenger Cabin –
.......... Kohyu Satoh ... (47)

Published by
Fire Research Institute of Japan.
14-1, Nakahara 3-chome, Mitaka, Tokyo, Japan.
1. はじめに

火灾時の発生ガスは、建材、家具、衣類など火災対象物の化学組成によって、その種類や量が異なることは周知であるが、燃焼環境によっても大きく異なる。毒性に関しては、後者の燃焼環境による影響の方がむしろ小さいといってよいかも知れない。火災中毒死の大部分は、いかなる有機物の燃焼によっても発生し得るCOガスによるからである。

燃焼環境のうち、温度、空気仕様条件などのCO発生への影響については既報したが(1~3)本報では水蒸気の存在のCO発生への影響を空気仕様条件との関連で報告する。

水蒸気が燃焼反応に影響することは知られている。たとえば、水蒸気が存在下では、燃焼あるいは高温熱分解を行うと、発生する炭の量は著しく減少する(4)。煤の量は高温で増加し、生成した炭と水による水素ガス反応

\[C + H_2O = CO + H_2 \]

や、燃料またはその分解物と水の反応

\[CmH_{2n+2} + mH_2O = C_mH_{2n+2} + mCO + 2mH_2 \]

(\text{m+n} = n)

などが考えられる。これらの反応はいずれもCO発生を伴うものである。

また、水蒸気による空気中酸素の希釈も燃焼反応に影響を及ぼすものと思われ、CO発生量の増大の可能性がある。

水蒸気の多量に存在するひとつの例として火災の救火用消火水の場合がある。建物火災では、特に、火災発生が発生したため、水蒸気が存在する火災の状況においては、水蒸気が発生する。その際、消火に手間をとるような場合には、COが多量に発生し、火災現場周辺におけるCO中毒につながる危険がある。

本研究では、火災時のCO発生量の水蒸気の影響について、高分子物質および低分子燃料を水蒸気存在下で電気炉に加熱し、発生ガスを燃焼させることによって調べた。

2. 実験方法

燃焼、熱分解に供した実験装置はFig. 1に示す。高温建物電気炉（長さ55cm）に石英管（内径3.6cm）を貫通し、燃焼管としたものである。空気または窒素ガスを燃焼管に通じ、そこへ水および燃料を同時に導入し燃焼、熱分解を行なった。燃料には、高分子のセルロース、ポリエチレン（PE）、ポリスチレン（PS）、メタクリル樹脂（PMMA）、低分子のメタノール、エタノール、
ル、n-ヘキサンおよびペンゼンを用いた。低分子の前者はゼルロース、PMMAの熱分解物に対応し、n-ヘキサンはPEの、また、ペンゼンはPSの熱分解物に対応するものと考えて選んだ。空気および窒素はポンベからダイヤフラム式フローコントローラーを経て燃焼管に導入した。水はスリンジ型無脈流定量ポンプで炉の入口前方5cmの位置に導入し、プロペラーナーの炎の熱で気化させ、空気または窒素ガスと自然混合させ、炉内に送入した。燃料が高分子物質の場合は試料0.5gをアルミフォイルのポットに入れ、炉の出口から内部へ25cmの位置に挿入した。また、低分子液体燃料の場合は、水と同様、スリンジ型ポンプにより0.3g/minの速度で炉の入口前方5cmに導入、気化させた。炉の加熱温度は燃焼管の中心部に挿入したステンレスシースC-A熱電対（3.0mmφ）を用いて検出し、温度コントローラーで自動調節した。

燃焼、熱分解により発生するガスは、試料が高分子の場合は全量をゴム風船内に捕集した。また、試料が低分子の場合は、燃焼、熱分解は定常的に行なうため、発生ガスは一部を100〜200mlスリンジにサンプリングした。

捕集したガスの分析はガスクロマトグラフによって行なった。すなわち、カラムにシリカゲルとケミカルシーゼブ5Aの中間バルクガスを用いて、CO、CO₂、O₂、NO₂などの濃度を分析した。この結果からCO、CO₂の発生量を求めるとき、全量捕集の場合は問題ないが、サンプリング方式の場合は、捕集ガス中のNO₂濃度を基にして計算した。

3. 実験結果と考察

3.1 高分子物質の場合

空気中でPEを燃焼500〜700℃で燃焼させ、CO発生量と蒸気存在の影響を調べた。試料を0.5g燃焼させたときの燃焼状況、CO発生量および空気供給速度の関係をFig.2に示す。CO発生量は水蒸気の存在によつて一般に大きくなることが多いことがわかる。水蒸気が存在する場合、500〜700℃の溫度範囲では温湿度が低い方が、COの最大発生量は大きく、500℃では水蒸気が存在しないときに比べて5倍以上に増してている。

他の高分子物質、ゼルロース、PSおよびPMMAについても、試料0.5gを燃焼させ、600℃で同様の実験を行なった。その結果をFig.3に示す。いずれの場合も、Fig.2 CO evolutions from combustion of polyethylene in presence of water vapor
Sample amount: 500 mg
H₂O flow rate: ● 0 g/min, ○ 0.5 g/min, □ 1.0 g/min
* CO(g/g): CO(g)/Sample amount (g)
水蒸気の存在によってCO発生量は著しく増加する場合のあることがわかる。
Fig. 3 CO evolutions from combustion of various polymers in presence of water vapor
Furnace temperature: 600°C, Sample amount: 500 mg,
H₂O flow rate ● 0 g/min, ○ 0.5 g/min, ◇ 1.0 g/min

Fig. 4 CO evolutions from pyrolysis of various polymers in nitrogen atmosphere with water vapor
Nitrogen flow rate: 1 l/min
Sample amount: 500 mg
水蒸気存在下ではCOが量的には多くないが、発生したのは、式(1)，(2)など水蒸気の直接的反応に関与するものであろう。

空気中における燃焼の場合の結果については、次節において、低分子物質の燃焼の結果と共に考察する。

3.2 低分子物質の場合

高分子の場合は固体であるため、試料はポートに入れて炉内に挿入するが、炉内において、試料の重量減少速度あるいは燃焼速度は一定でないため、空気や水蒸気の供給速度は一定でも、それらの相対的強度は当然変化する。したがって、COなど燃焼生成物の発生も燃焼中変化する。そこで、燃焼速度を一定にコントロールすることができる液体燃料を用いて、CO発生の水蒸気による影響をさらに詳しく調べてみた。燃料には、n-ヘキサン、ペンゼン、メタノールおよびエタノールの4種を用いた。これらは、前にも触れたが、本実験で用いた高分子物質の熱分解物のいずれかに構造的に近いものである。

n-ヘキサンを炉温600～900℃で燃焼させたとき、水の供給速度をパラメーターとして、CO発生量と空気供給速度の関係を調べた結果をFig.5に示す。いずれの場合も、空気供給量を増加していくと、CO発生量は、増加してある点でピークに達し、次に減少した。この減少は明らかに燃焼が無炎から有炎に変わったためと思われる。水蒸気が存在しない場合には、空気供給速度を1.0g/minまで増加すると、CO発生量に減少が起った。

![Graphs](image)

Fig. 5 CO evolution from combustion of n-hexane in presence of water vapor

Flow rate of air: 0.3 g/min

H₂O: ● 0 g/min, ○ 0.3 g/min, ○ 0.6 g/min, ● 1.0 g/min

\[\phi = \frac{\text{Air supply rate}}{\text{Stoichiometric air supply rate}} \]
Fig. 5(1)に示すように，水蒸気が多重に存在する場合に
は，空気供給速度は1.0ℓ/minでも，なおCO発生量は
増加した．一方，水蒸気濃度が低いときに，CO発生量
が減少したのは，燃料－空気－水蒸気の混合気が爆発
範囲に入り，有炎燃焼に変わったためであろう．そこで，
ほとんど認められない．一方，n-ヘキサンやベンゼン
の場合，COは熱分解のみによっては生成されないが，
少量ではあるが生成したのは，明らかに水蒸気の反応
関与によるものであろう．

窒素中における熱分解の場合および空気中における

水蒸気のCO発生への影響は，水蒸気の空気中酸素の希
釈による発炎阻止に基づくものと思われる．なお，空
気供給速度が1.0ℓ/min以下と低い場合には，水蒸気
の有無によるCO発生量の差が非常に小さいかったが，そ
れは，水蒸気のない場合にも有炎燃焼が起こらなかった
ためと思われる．この差が小さいのは水蒸気の直接的
反応関与の割合が小さいことを示唆している．

Fig. 6にメタノール，エタノールおよびベンゼンを
水蒸気存在下で燃焼させた場合，CO発生量を調べた結
果を示す．ベンゼンからのCO発生量はn-ヘキサンの場
合と同様の傾向を示した．しかし，メタノールやエタ
ノールでは，CO発生量の水蒸気による影響は一般に小
さかった．これらは爆発範囲が広く，有炎燃焼が起こり
易かったためと思われる．しかし，水蒸気が存在する
場合の方が，CO発生量は多少大きい場合が多く，水蒸
気濃度をさらに上げれば，ベンゼンやn-ヘキサンの場
合と同様な傾向になるものと思われる．

窒素中においても，上の4種の燃料を熱分解したと
きのCO発生量の水蒸気による影響を調べた．その結果
をFig. 7に示す．Fig. 4における高分子物質の場合と
同様，分子中に酸素を含むメタノールやエタノールの
場合，CO発生量は大きいが，これは熱分解によって生
じたものので，水蒸気による影響は熱差の範囲を超える
無炎燃焼の場合の結果を併せ考えると，水蒸気の直接
的反応関与すなわち水蒸気と燃料，または，その分解
生成物との間の反応によるCO生成の程度は，本実験の
温度範囲，すなわち，多くの火気温度範囲では，極く
小さいと結論できる．

水蒸気の導入によって燃焼が有炎から無炎に変わる場
合には，CO発生量は有炎の場合に比較して著しく増大
したが，CO2に関しては逆の関係になった．すなわち，
n-ヘキサンをFig. 5(1)の条件で燃焼させたとき，CO2
発生量は，Fig. 8に示すように，空気供給速度1.0ℓ/min
の場合，CO発生量の場合と逆に水の供給速度が小さい
程，大きくなった．これは，CO2生成量は有炎燃焼
で大きく，無炎燃焼で小さいことを意味している．

以上のように，有炎，無炎によってCO，CO2の生成
が影響される現象は次のように説明できるよう．

水蒸気濃度の低い場合には，燃料吐出口の近くでは，
燃料－空気－水蒸気の混合気の一部は必ず爆発範囲
に入り，有炎燃焼が起こり，そのとき，温度の高い炎
の部分では酸化はCO2生成にまで進む．この生成され
たCO2は燃料過剰な雰囲気でも，炉温が低いため，CO
へは変化せず，CO2へとまとまる．

一方，水蒸気濃度が高い場合は，混合気は爆発範囲
に入らず，緩慢燃焼によってCOは生成するが，CO2へ
の酸化はほとんど起らない。

したがって燃料と酸素量さえ一定であれば、希釈などによって濃度が変わっても、燃焼ガス中のCO、CO₂、
O₂などの量が一定であるということはあり得ない。

すなわち、COやCO₂の生成量は燃料量および酸素量だけでなく、酸素濃度にも依存する。また、温度にも。当然、関係するから、それらの生成量は温度、燃料量、
酸素量および酸素濃度の関数ということになる。これは、COやCO₂だけでなく、他に酸素の存在によって影
響を受ける燃焼、熱分解生成物についても適用できるものと思われる。

次に低分子物質についての実験結果に基づいて、高
分子物質の燃焼の場合の実験結果についても考察を試
みる。

Fig. 2-3において、一般に水蒸気が存在すると、CO
発生量が大きくなったのは、Fig. 5-6の低分子物質の
場合と同様、水蒸気の希釈効果と考えられる。空気供
給速度が小さい場合、水の供給速度が1.0g/minのと
きよりも、0.5g/minのときの方がCO発生量はむしろ大
きくなることが多かったが、それは次のように説明できよう。

空気供給速度が小さい場合でも、試料の付近では必ず爆発範囲に入る分解物—空気混合気—が存在し、有炎燃焼が起るが、水蒸気によって希釈されると、有炎の程度が減少するか、または、無炎燃焼になる。そのため、CO発生量は有炎の場合に比べて大きくなる。しかし、水蒸気濃度が高くなり過ぎると、空気中の酸素分子の燃料分解物分子との衝突機会が減少し、COの生成は減少する。

Fig. 2において、温度が低い方がCO発生量は大きくなくなつが、その理由の一つに、温度が低いと爆発範囲が狭くなり、発火が起こり難くなることが挙げられる。また、この場合、炉温の違いによる分解速度、すなわち、燃焼速度の違いもCO生成に当然関係しているものと思われる。

4. まとめ

高分子物質およびその熱分解生成物に構造的に近い低分子液体燃料を電気炉で加熱石英管内に燃焼または熱分解を行ない、水蒸気存在下のCO発生量に及ぼす影響を調べた。その結果の概要は次の通りである。

(1) 水蒸気が存在する場合には、CO発生量は増加する場合が多い。

(2) 水蒸気の直接の反応関与によるCO生成の割合は小さく、その酸素希釈効果によるCO生成の割合が大きい。

(3) COおよびCO₂の発生量は温度、燃料量、酸素量およびO₂濃度の関数である。

引用文献
1) 守川時生, 消防研究所報告, 49, 14 (1980)
2) 守川時生, 消防研究所報告, 51, 1 (1981)
Effect of Water Vapor on CO Evolution in Fire Conditions

(Abstract)

Tokio Morikawa
(Received November 13, 1981)

Polymer materials and low molecular weight liquid fuels, which are structurally close to thermal decomposition products of the polymers, were subjected to combustion or pyrolysis in the presence of water vapor in a horizontal tube furnace. The evolution of carbon monoxide was determined with respect to the air and water supply rates to evaluate the effect of water vapor on CO evolution. Results are summarized as follows.

1) In most cases, an increased evolution of CO is recognized in the presence of water vapor.
2) The evolution of CO through a chemical reaction directly involving water vapor is negligibly small compared with that resulting from the dilution of oxygen with vapor.
3) The evolutions of CO and CO₂ are functions of oxygen concentration and mass as well as fuel mass and temperature.
容器破口からの噴出水流について

中久喜 厚・亀井 浅道

（昭和56年11月30日受理）

1. まえがき

容器に貯わられた水、石油類が容器の破壊によって噴出し、その噴流が流れをさえぎる構造物、例えば防波堤などに衝突したときにどのような圧力を与えるかを知っておくことは、それらの構造物の設計のためには重要なことであるが、これまでにその種の資料は得られていない。

本研究では、液体貯槽の底板または側壁が破壊し、その破口から液体が噴出した場合の流れに関するモデル実験として、小型水槽の容器底板または側壁の開口部から水を平らな床面上に噴出させたときの噴出水流の性状、すなわち噴出水流の展開、水流に直交するようにおかれた垂直壁面上の圧力分布、水流が壁面に衝突したときの状況等を観測する実験を行ったので、ここにその結果について述べる。

実験概要

2.1 実験装置

使用した容器は鋼製で、Fig. 1に示すように一边800mmの正方形断面で高さが2700mmの上端面開放の直方体である。容器の側板下部及び底板には150×150mmの開口部が設けられ、これらの部分に開口の形状、大きさの異なる各種のオリフィス板が取付けられるようになっている。規格されたオリフィス板面はスライド板の基板面と同一平面となり、この基板をスライド板は2本の平行なガイドに拘束されながらFig. 2のような機構で撓動しうるようになっている。スライド板は取付けられたワイヤーロープで、Fig. 1のようにブリッジを介して人力で動かされる。オリフィス板の開口部は円形及び長方形のものが用いられた。円形オリフィスは、口径150、120、84.85、60、42.43mmのもので、長方形オリフィスは、開口部が150×150mm、150×75mmの2種が用いられた。オリフィス板と容器本体との間の水密をよくするために、オリフィス板にFig. 3のようにゴムパッキンを密着させるようにした。また、オリフィス板とスライド板との間をよくするために、オリフィス板に予め多量のワセリンを塗布するようになった。容器側壁には、容器内水位が分かるように連通管が設けられた。

容器底板開口部に取付けられたオリフィスから水を下方向に放出させる場合には、底板下部にFig. 1に示すような孔の模型が作りられた。底板下部に角木材を開口部を長方形形状に囲むよう置いていた。孔の出口幅は100、200、400mmに変化させた。洗塚孔のもう一つの模型として、4×4、4×6、6×6、8×8cmのエルボを単独で、さらにこれにニップル等を結合したものも用いた。

垂直障壁の構造をFig. 4に示す。障壁の幅は1800mm、高さ500mmである。壁面に圧力センサーが取付けられるように、500mm間隔に障壁中心を対称軸として176個の孔が設けられた。センサーの取付けに使用した孔以外の孔はすべて壁面で塗りつぶしたようにした。圧力センサーは、一边の長さ600mmの正方形の真鍮板の中心に接着剤で固定され、その真鍮板の四隅には50mm間隔の取付け用の孔が設けられている。

使用した圧力センサーは、共和電業PSL-200GAMで圧力測定範囲は0～200g/cm²である。実験当日の実験開始前に、センサーを水槽内の所定の深さまで入れて検定を行った。

2.2 実験の方法

容器内に水道水を所定の高さまで注入した後、水の注入を停止し、スライド板を急速に動かして水を噴出

*現在危険物保安技術協会
Fig. 1 Vessel used for the test.
させ、容器内の水位、水流の展開、噴出水流がその流れの方向と直角になるようにおかれた垂直障壁に衝突している状況や壁面上の圧力分布等の経時変化が観測された。

水の流出による容器内水位の経時変化は、連通管内の水位と時間とビデオデッキで同時記録することによく求められた。水噴出開始から水流が床面上を展開する状況を斜上方から16mmシネカメラ（高速度、普通）で、また障壁に衝突している状況をカラービデオで撮影記録した。センサーによって計測記録された圧力の0点は、容器内水位が低くなり、センサーに水流がかからなくなつた時点の指示とした。また、側壁に取付けられたオリフィスからの棒状噴流に圧力センサーをおき、圧力の経時変化を測定し、容器内水位の経時変化を推定した。

次の各種要因を変化させ、これらの要因の噴出水流の性状に対する影響を調べた。

1) オリフィス開口部の形状・大きさ
2) オリフィス開口部中心から初期流面までの鉛直距離：H_0 (m)
3) オリフィスと障壁面との水平距離：S (m)
4) 放出方向：容器側壁または底面からの放出。前者を水平方向放出、後者を下方向放出とよぶことにする。
5) 模型洗剤孔の形状・大きさ

H_0は水平方向放出の場合、2.35, 1.85, 1.35 m、また下方向放出の場合、2.5, 2.0, 1.5 m、Sは3.5, 2.5, 1.5 mのそれぞれ3通りに変化させた。オリフィスからの棒状噴流に圧力センサーをおいて圧力を測定する場合には、Sを0.5または0.2 mとした。

3. 実験結果

3.1 容器内水位の経時変化

Fig. 5 は、各種オリフィスについて、水平方向放出で$H_0=2.35$ mの場合における水放出開始後の連通管内の水位変化測定から得られた容器内水位の経時変化である。図中には、棒状噴流を直接圧力センサーによって求めた圧力測定値から推定された水位も示してあるが、前者の結果とよく一致している。

オリフィスからの噴出流量Qは次式で表わされる。

$$Q = - A_1 \frac{dH}{dt} = C A_2 \sqrt{2gH}$$

ここで、A_1：容器断面積、A_2：開口部面積
Fig. 5 Change of water level in the vessel with time after the start of discharge.

Fig. 6 Change of water level with time (non-dimensional expression of the data of Fig. 5)

\[(H/H_0)^{1/2} = 1 - Ct/\sqrt{2} \]

ここで

\[t = A_1 \sqrt{g} t / (A_1 \sqrt{H_0}) \]

Fig. 5の結果を \((H/H_0)^{1/2}\) と \(t\) の関係に書き直すと、Fig. 6のようになる。直線関係が得られる。この直線の勾配から(2)式によって \(C\) を求めると、円形オリフィスの場合 \(C = 0.62\) となり、一般に水位を一定にして求められている \(C\) の値とはほぼ一致する。従来のエルボにニップルを結合した場合の \(C\) はFig. 6に示すように 0.93 となる。以上のことから、タンクの底板が破壊し、石油が底板下に形成された洗掘孔を通して流出する場合の \(C\) はほぼ 1 であることが推定される。

3.2 噴出水流の流れ挙動

(1) 噴出水流の展開 水噴出開始後、水流の床面との展開の様子を 16mm ニュメーカーで後方から撮影した。

Fig. 7 Spreading of discharged water on the floor.

(a) Orifice: 120 mmφ;
\[H_0 = 2.35 \text{ m}; \ S = 2.5 \text{ m}; \]
Direction of discharge: horizontal.

(b) Orifice: 150 mmφ;
\[H_0 = 2.5 \text{ m}; \ S = 3.5 \text{ m}; \]
Direction of discharge: downward.

その結果をFig. 7に示す。Fig. 7(a)は容器側壁に取付けられた 120mmφ のオリフィス、Fig. 7(b)は側壁に取付けられた 150mmφ のオリフィスからの噴水の場合である。この図から、前者の方が後者よりも水流の展開速度は大きく、横方向の広がりが小さいことが分かる。

下方向放出の場合Fig. 8(a)に示されるように、喷水はコンクリート床面に衝突した後上方に跳ね上がり、この跳ね上がりの一部は障壁まで跳ぶことがある。

Fig. 8(a)に示されるように、喷水はコンクリート床面に衝突した後上方に跳ね上がり、この跳ね上がりの一部は障壁まで跳ぶことがある。

Fig. 8(b)のように流れの強い部分が二つに分れる。オリフィス出口直前に、オリフィス開口部に向かう二方向の流れがつかまえるためである。

(2) 噴出水流の障壁への衝突の状況 噴水を開始して水流が障壁に衝突した瞬間、Fig. 8(c)のように上方向に大きく跳ね上がり、\(H_0\)が大きく \(S\) が小さいときは、その跳ね上がりの高さは障壁の高さを越える。このようなときでも、跳ね上がった水は上から喷出水流と逆方向に落下し、障壁を越えてその裏側に達することはない。時間の経過とともに容器内の水位が低くなるために、跳
Fig. 8 Water flow pattern in the vicinity of the barrier.

上りの流れは次第に低くなる。容器内の水位が低くな
ってもFig. 8 (d)のように、障壁の近くで水流の盛上り
形が形成される。これは、押し寄せる噴出水流と障壁に
衝突して跳ねた水流がぶつかり合うためである。障
壁に衝突した後の水は、障壁に沿って横方向に流れ去
る。

開口部に近い床面上に、上に凸の半球形状の突起物
をおくと、喷出水流はこの突起物に衝突して跳ねり障
壁をとび越える場合のあることが確かめられた。

3.3 噴出水流の衝突による障壁面上の圧力分布

噴出水流の衝突によって生ずる障壁面上の圧力の分
布は時間とともにFig. 9のように変化する。Fig. 9は、
$H_0 = 2.35 \text{m}$、$S = 2.5 \text{m}$ で、120mmφ のオリフィスから
の水平方向放出の場合はである。図9の横軸を含め、以
下に記されるs は、障壁に最初に水流が衝突した瞬間
からの時間をとする。圧力は、噴流の軸上床面より少し
高い部分（約 3 〜 5 cm）で最大となる。時間の経過と
ともに障壁面各部の圧力は低くなり、渦に跳ねた水の
高さの静圧を感知する程度となる。

Fig. 10 は、$H_0 = 2.5 \text{m}$ で120mmφ オリフィスからの
下方向放出の場合における障壁面上初期の圧力分布に
対するs 及び洗堀孔の出口幅の影響を示したものであ
る。洗堀孔出口幅40cmの場合以外、噴流軸上の障壁で
圧力の極大となる部分が2ヶ所に生ずる。上方の圧力
極大部は、床面に衝突した噴出水のうち跳ねたもの
が障壁に衝突して生ずるものと考えられる。洗堀孔出
口幅20cmの場合に、$S = 1.5 \text{m}$ の方が $S = 2.5 \text{m}$ の場合
より上方の圧力極大部の位置が高くなっている。このこ
ことも、上記の推定を裏付けることになる。

3.4 障壁面上の最大圧力

噴出水流の衝突による障壁面上の圧力は、Fig. 9、
10にみられるように、噴流軸上床面から 3 〜 5 cm位の
Fig. 9 Change of pressure distribution on the surface of the barrier with time (horizontal discharge). y and z are the horizontal distance from the center of the barrier and the upward distance from the floor respectively.
Orifice dia.: 120 mm; $H_o = 2.35$ m; $S = 2.5$ m.

<table>
<thead>
<tr>
<th>S (m)</th>
<th>Outlet width (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>20</td>
</tr>
<tr>
<td>2.5</td>
<td>20</td>
</tr>
<tr>
<td>2.5</td>
<td>40</td>
</tr>
</tbody>
</table>

Fig. 10 Initial pressure distribution (at time 0 s) on the surface of the barrier. Notation is the same as in Fig. 9.
Orifice dia.: 120 mm; $H_o = 2.5$ m; direction of discharge: downward.
高さのところで最大となる。$t = 0$ のときの最大圧力 P_{max} と H_0 との関係を示したのが Fig. 11 である。$S = 2.5$ m の場合であるが、水平方向と下方向の何れの放出の場合でも、P_{max} は H_0 にはほぼ比例して増大する傾向を示している。P_{max} は下方向放出よりも水平方向放出の場合の方が明らかに大きくなる。

Fig. 11
Initial maximum pressure on the barrier vs. initial water level.

Fig. 12
Change of initial maximum pressure on the barrier with time.

任意の時間における障壁面上の最大圧力 P_{max} の経時変化を無次元数で表わしたのが Fig. 12 である。初期水位 H_0 に無関係に $(P_{\text{max}}/P_{\text{max}})^{1/2}$ と t の関係は 1 本の曲線上にある。P_{max} が H_0 に比例するとすると、Fig. 6 から分かるように、$(P_{\text{max}}/P_{\text{max}})^{1/2}$ と t の関係は図中の傾線で表わされるはずである。(Fig. 12) の実測値が t の小さい範囲で傾線すなわち $(H/H_0)^{1/2}$ を下回るのは、障壁で跳返る水によって障壁に向う水流が弱められるためであり、$t = 1.6$ 以上で逆に傾線を上迴るようになるのは、障壁での跳返り水と噴出水流が互いに合ってできる予想外に広い水の層による静圧のためであるろうと考えられる。

P_{max} と S との関係を Fig. 13 に示す。円形オーフィスの水平方向放出の場合、Fig. 13 中の実線のように $S \leq 0.62$ m では $P_{\text{max}} = 2350$ mm Aq の到達しうる最大圧力となら、棒状喷流がここまで到達していることを示し、$S > 0.62$ m では P_{max} の最大値はオーフィス口径に無関係に、勾配が 0.1 である直線上にある。オーフィス口径が小さいほど、S のより小さいところで直線から外れて P_{max} は急激に小さくなる傾向を示している。

Fig. 13
Initial maximum pressure on the barrier vs. horizontal distance from the orifice to the barrier.

長方形オーフィス、エルボの場合でも、データは少ないが同様の傾向を示すことが予想される。Fig. 13 中の実線は次の式で近似的に表わされる。

$S \leq 0.62$ m では,

$$P_{\text{max}} = 1000 H_0$$

$S > 0.62$ m では,

$$P_{\text{max}} = 600 H_0/S$$

ここで P_{max} の単位は mm Aq とする。H_0, S の単位は m である。

-15-
4. あとがき

水を入れた小型容器側壁または底板の開口部から水を噴出させ、噴出水流の性状を観測する実験を行った。その結果、次のような結論が得られた。

(1) 容器側壁に取付けられたオリフィスから噴出させた場合の流量係数は、外部から容器に水を補給し水位一定にした場合とはほぼ一致する値を得たが、容器底面の開口部から流出し洗掘孔が生じた場合の流量係数はほぼ1であることが予想される。

(2) 噴出開始直後、噴出水流はその先端がオリフィスから離れると高方向に広がり、障壁に衝突すると跳上り、その跳水が障壁の高さを越えることがあっても、障壁をとび越えることは考えられない。

(3) 噴出水流の衝突による流れに直接する障壁面上の圧力は、噴流軸上の床面近くで最大となり、そこから離れると従い減少する傾向を示す。

(4) 噴出水流が最初に衝突したときの障壁面上の最大圧力は、比較的開口部に近い範囲で、オリフィス径に無関係に初期水位に比例し、障壁からオリフィスまでの距離に反比例する近似式で表わされる。

本実験の結果は、小型容器によって得られたものであり、実用規模の石油タンクなどの場合への適用性については、今後さらに大型の容器によって確かめる必要がある。

謝辞 この研究を実施するために当り、富田 理治（神奈川県消防本部）、平野 敬行（川崎市消防局）両氏のご協力を得た。両氏に対し厚く御礼申し上げる。
Flow Properties of Water Discharged from a Vessel Opening

(Abstract)

Atsushi Nakakuki and Asamichi Kamei

(Received November 26, 1981)

Properties of water flow from the opening at the base plate or the lower part of the shell of the vessel $900 \times 900 \times 2700$ mm were measured. The effects of the shape and size of the vessel opening, the initial distance from the center of the opening to the liquid surface H_0, the horizontal distance from the opening to the vertical barrier perpendicular to the direction of water flow S, the direction of discharge, etc. on the flow properties, i.e. the spreading of water flow on the floor at the initial stage of discharge, the flow pattern in the vicinity of the barrier, the hydrodynamic pressure on the barrier, etc. were investigated.

The pressure on the barrier was the maximum at some distance (3 ~ 5 cm) above the floor on the flow axis. The initial maximum pressure exerted on the barrier were found to be proportional to H_0/S in the range of comparatively small S.
木材クリブ火炎の傾きに関する研究

山下 邦博

（昭和56年12月2日受理）

1. まえがき

市街地火災の延焼及び避難地の安全性を検討する場合には、火災周辺の放射照度分布などの熱的環境を明らかにする必要がある。この場合、火炎長とともに火炎の傾きが重要である。現在、市街地火災の延焼の問題については、火炎の傾きに関する浜田式が簡便なこともあって広く利用されている。しかし、この式は他実験結果と一致しない場合があり、かつ適用限界が明確でない。この研究では木材クリブ火炎の傾きとフールド数の関係を実験的に調べるとともに火炎の傾きを有効性比を用いて表す方法を示し、浜田式の適用限界を明らかにした。

2. 実験及び分析方法

実験に用いた木材クリブは正方形と高さが一定（それぞれ1m、0.18m）である。木材クリブの火災容積率は52％で、クリブ奥行（D）は6種類（0.20、0.40、0.60、1.0、1.6、2.2m）とした。木材クリブは材質（屋内で自然乾燥させたもの）で実験実施時の含水率は10－18％であった。木材クリブの点火は主にエタノールの噴霧をクリブ上の全面に均一にかけ、それを燃焼させることによって行った。実験は大型送風機により発生させた水平流（平均流速U，以下流速と呼ぶ）中で木材クリブを燃焼させ、燃焼かば常温状態になった時点で流速を段階的にかけ、火炎の傾きの状況を真横から5回写真撮影することによって行った。8ミリカメラにより火炎の傾き状況を各条件（奥行きと流速を変える）下で10－15秒づつ撮影し、後で分析した。流速測定はクリブ風上1.5mの床に0.3mの地点に熱線風速計の受感部及びヒト一管をおいて行った。火炎の傾きに及ぼす障害物の効果を調べるため、木材クリブの風上または風下に平板（高さ0.18m）を風向き直角において、火炎形状の変化を観測した。各条件下の火炎形状を求めるのに、8ミリフィルムから6コマ（5秒）に5回だけ火炎形状を写しとり、それらの平均的位置から火炎形状を定めた。火炎の傾きは、目測により火炎の中心軸を直線で近似し、その傾きから求めた。火炎の傾き角度はFig. 1に示すように、火炎中心軸と水平面の間の角度（θ）で表わし、その余角をαとした。また、木材クリブの奥行きをDとし、クリブ風下の火炎接地距離をDとし、火炎中心軸のほかに火炎の風上、風下端の傾き角度についても求めた。

3. 実験結果

3.1 火炎形状の時間変動

真横からみた火炎形状は刻々と変動しており、火炎長及び火炎の傾きの変動として現れる。火炎形状は水平
気流の流速の乱れにも影響される。Fig. 2 (a), (b) は
奥行が0.6m及び2.2mのときの火炎形状の時間変化を
8ミリ秒毎に3箱間隔で5回読み取ったものである。瞬間的な火炎の先端の形状は異なり、火炎先端

Fig. 2(a) Variation of flame configuration
\(D = 0.6 \text{ m}, U = 0.87 \text{ m/s} \)

Fig. 2(b) Variation of flame configuration.
\(D = 2.2 \text{ m}, U = 0.93 \text{ m/s} \)

位置の変動幅は火炎長方向で大きく、火炎長 \(L \) の約 \(\frac{1}{2} \) にも達したのに対し、火炎の風上・風下両端では幅方向の変動は小さかった。これらの図から、火炎長の時
間的変動が大きいのに対し、火炎の傾きの変動は顕著で
なかったことが分かる。水平気流の乱れの強さは8
〜15％で、自然風に比較して乱れの強さが小さく、こ
れが火炎の傾きの変動幅が小さくなった理由の一つと
推定される。

3.2 火炎形状と奥行の関係

火炎形状は流速及びクリップ奥行の大小によっても変
化した。クリップ奥行 \(D \) が0.4mと2.2mで風速を変
えた場合の火炎形状を Fig. 3 (a), (b) に示す。クリップ
の奥行が小さい場合には火炎形状は正方形で、その形
は流速が大きくなってあまり変化せず、傾き角 \(\theta \)
だけが流速に応じて小さくなった。一方、クリップの奥
行 \(D \) が大きい時には、火炎形状は流速の大小によって
大きく変化した。流速が小さい場合には周辺気の流入
現象が顕著に現われ、火炎形状は凸形になりクリップ中

Fig. 3(a) Flame configuration under the different wind velocity.
\(D = 0.4 \text{ m} \)

Fig. 3(b) Flame configuration under the different wind velocity.
\(D = 2.2 \text{ m} \)
心部付近で火災が大きくなった。流速が大きくなると流入現象は不明確になり、火災の形状は台形状になった。クリップ奥行が大きく、かつ風速が小さい場合に、すなわちフールド数（\tilde{U}/gD）が小さい場合には図表からの流入気流のため、火災の主要部はクリップ直上だけに形成され、クリップの横方向には、はみでなかった。これに対し、フールド数が大きい場合にはクリップ内部を気流が吹き抜けて火災がクリップの風下側面からも噴き出し、その火災がある距離（火災接地距離）だけ地面（床）に接触した。この現象は油火災の風下で火災が地面に接触する現象（flame trailing）に類似している。

3.3 火災の傾き

実験で得られたクリップの燃焼条件と火災の傾き角をTable 1 に示す。クリップ奥行が大きい場合には火災形状は凸形状になり、火災の傾きは火災中心軸、火災風上端、火災風下端（それぞれθ₁、θ₂、θ₃で示す）で異なった。火災中心軸、火災風上端及び火災風下端の傾きとフールド数（\tilde{U}/gD）の関係を表わしたもののがFig. 5 である。図中の線長は火災の風上端と風下端の傾きの範囲を示す。傾き角が90度を越える場合には補角を用いて示した。また、図中の直線は(1)式で示され火災の傾きを表わす浜田の式である

$$\tan \theta = -\frac{4D}{\tilde{U}^2}$$

(1)

ただし、D はクリップ奥行で、\tilde{U} は平均流速である。クリップの奥行が大きくなる程、実験データは浜田の式からはずれた。また、フールド数が大きくなると傾きはフールド数にあまり依存しないになるに対し、フールド数が小さくなると実験データは浜田の式に平行にな
<table>
<thead>
<tr>
<th>D (m)</th>
<th>\bar{U} (m/s)</th>
<th>$\tan \theta$</th>
<th>D (m)</th>
<th>\bar{U} (m/s)</th>
<th>$\tan \theta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.40</td>
<td>2.14</td>
<td>1.0</td>
<td>1.40</td>
<td>0.42</td>
</tr>
<tr>
<td>0.63</td>
<td>1.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.70</td>
<td>5.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.93</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.07</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.59</td>
<td>0.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.63</td>
<td>2.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.07</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.33</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>0.79</td>
<td>3.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>2.48</td>
<td>0.34</td>
<td></td>
<td></td>
<td>0.97</td>
</tr>
<tr>
<td>0.93</td>
<td>0.97</td>
<td></td>
<td></td>
<td></td>
<td>1.25</td>
</tr>
<tr>
<td>1.10</td>
<td>0.51</td>
<td></td>
<td></td>
<td></td>
<td>1.53</td>
</tr>
<tr>
<td>1.03</td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
<td>1.68</td>
</tr>
<tr>
<td>0.79</td>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
<td>2.38</td>
</tr>
<tr>
<td>0.93</td>
<td>1.15</td>
<td></td>
<td></td>
<td></td>
<td>0.97</td>
</tr>
<tr>
<td>1.97</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td>1.12</td>
</tr>
<tr>
<td>1.72</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td>1.25</td>
</tr>
<tr>
<td>1.20</td>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
<td>0.53</td>
</tr>
<tr>
<td>1.03</td>
<td>0.90</td>
<td></td>
<td></td>
<td></td>
<td>1.53</td>
</tr>
<tr>
<td>0.6</td>
<td>1.28</td>
<td>0.70</td>
<td></td>
<td></td>
<td>1.68</td>
</tr>
<tr>
<td>0.93</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td>2.38</td>
</tr>
<tr>
<td>0.87</td>
<td>1.33</td>
<td></td>
<td></td>
<td></td>
<td>0.97</td>
</tr>
<tr>
<td>1.39</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td>0.69</td>
</tr>
<tr>
<td>1.55</td>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
<td>1.11</td>
</tr>
<tr>
<td>1.96</td>
<td>0.51</td>
<td></td>
<td></td>
<td></td>
<td>0.79</td>
</tr>
<tr>
<td>1.28</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td>0.93</td>
</tr>
<tr>
<td>0.10</td>
<td>1.07</td>
<td></td>
<td></td>
<td></td>
<td>1.31</td>
</tr>
<tr>
<td>2.70</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td>1.47</td>
</tr>
<tr>
<td>1.70</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
<td>1.04</td>
</tr>
<tr>
<td>1.39</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td>2.13</td>
</tr>
<tr>
<td>1.0</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td>4.10</td>
</tr>
<tr>
<td>0.79</td>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
<td>0.78</td>
</tr>
<tr>
<td>0.97</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
る（フルード数に反比例する）傾向があった。火災風上端は弱風下の場合でも周辺気の流入を受けているため、地上付近の火災の傾き角（水平面からの）は小さい。一方、火災風下端では自然風と火災に向う流入気流の流れの方向が逆であるため、自然風の風速が増大する場合には、傾き角の変動範囲が大きくなった。

3.4 障害物による火災形状の変化

クリップの末後に障害物がない場合（ケースA）と障害物が前方あるいは後方にある場合（それぞれケースB、ケースCとする）について、クリップの奥行（D）を0.4 mとして風速を変化させた場合の平均的火灾形状をFig. 6 (a) ～ (c) に示す。

\[\tan \theta = \frac{\frac{U^2}{gD}} \]

Fig. 7 Relation between flame bending and Froude number when plate barrier is placed.

CASE 'A' : in the absence of plate barrier
CASE 'B' : plate barrier is placed at the windward side of crib
CASE 'C' : plate barrier is placed at the leeward side of crib

4. 検討

火災の傾きに関しては浜田11 O.A. Pipkinら12 J. R. Welkerら13, 14によれば、いくつかの研究があり、火災の傾きがフルード数の関数で表わされることが明らかにされてきた。しかし、これらの結果を比較すると火災の傾きとフルード数の関係に関しては一致していない。浜田は浮力と抗力のいずれも火災の傾きに依存しないという仮定のもとに火災の傾き（\(\tan \theta \)）がフルード数に反比例するという結果を得た11一方、J.R.Welkerらは浮力と抗力のうち抗力だけが火災の傾きに依存するとして次の関係式を得た14a:

\[\tan \alpha = \frac{C_f U^2}{2f \left(1 - \frac{\rho_l}{\rho_g}\right) gD} \]
この式で、αは鉛直軸からの傾き角、Cfは火炎の抗力係数、fは火炎の形状係数で直方体形の火炎では1になる。浜田の式は(1)式で左辺の分母 \(\cos \alpha \) が1の場合である。今回の実験の結果から同じ大きさのクリプに対しては風速が変化しても火炎長は殆ど変わらず、火炎の体積がほぼ保存されていることが確かめられた。この結果は浜田の仮定よりもJ.R.Welkerらの仮定の方が妥当であることを示している。

(2)式から火炎の傾き角と風速及びクリプの大きさから抗力係数を求めることができる。計算した抗力係数の値は3～60の範囲にあたる。抗力係数はJ.R.Welkerらが指摘したようにレイノルズ数とフルード数の関数として表われる。最小二乗法により実験データからその関係式を求めると(3)式になる。

\[
C_f = 1.22 \times F^{-0.32} \times R_e^{0.22}
\]
(3)

この関係式から抗力係数がレイノルズ数及びフルード数に弱く依存していることが分かる。実験から得られた抗力係数の平均値27となる。

山下は火炎上昇気流の傾きを(4)式で表わされる有効速度比(J)を用いて表わす方法を示した(6)以下においてその方法を用いて火炎の傾きを表わすことを試みる。有効速度比は火炎と自然風の運動量の比の平方根である。

\[
J = \frac{W L}{U_D} \sqrt{\frac{R_D}{u^2}}
\]
(4)

この式で上昇速度Wは火炎全体の上昇速度で、その密度を \(\rho \) とする。また水平風の流速を \(U_D \) とし、その密度を \(\rho_d \) とする。下向きに風を吹き上げる気流が火炎でなく濃度の噴流であれば \(\rho = \rho_d \) で、有効速度比(J)を、

\[
J = \frac{W L}{U_D} \tan \theta \tan \theta = \text{有効速度比} \text{は噴流の傾きを表す。これに対して、火炎に働く浮力と抗力の2つの力の値の合いを考える。浮力と抗力はそれぞれ \(\frac{1}{2} \rho W^2 \) と \(\frac{1}{2} U_D L^2 \) に比例することから火炎の傾き(\(\tan \theta \))は、\(\tan \theta = \frac{J}{U_D} \) となり、速度の値から得られる結果(\(\tan \theta = J \))と異なる。このように流れは単純な運動量の単純な計算から、著しく有効速度比そのもの(\(J \))またはその二乗(\(J^2 \))に比例する量であることが明らかである。以下に述べる方法でその比例係数を求めることができる。

火炎の上昇速度の代表値として火炎先端における値を用いる。火炎先端の上昇速度WLは、P.H.Thomasらによって求められ、(5)式で表わされる。

\[
W_L = 0.36 \times \sqrt{\frac{2g(1-T)}{T}} \times L \]
(5)

(4)、(5)式を用いて火炎先端における有効速度比JLを計算することができる。

火炎長(\(L_D \))は \(L_D \)で近似できる場合には、有効速度比は(6)式になる。

\[
J_L = \sqrt{\frac{R_D}{\rho_d}} \times 0.36 \times \sqrt{2A} \times \left(\frac{L_D^2}{gD} \right)^{1/3}
\]
(6)

(2)、(4)、(5)式及び関係式 \(\theta = \frac{\pi}{2} - \alpha \) から傾き \(\tan \theta \) を求めれば(7)式が得られる。

\[
\tan \theta = \frac{a J_L}{\sqrt{a J_L^2} + \sqrt{(a J_L)^4 + 4}}
\]
(7)

ただし、この式で \(a^2 = f/0.36^2 \times C_f \times \left(\frac{L_D}{gD} \right) \) である。

この式では \(a J_L \) が \(\sqrt{2} \) よりも十分に大きい場合及び十分に小さい場合には、それぞれ次の式で近似される。

\[
\tan \theta = a J_L \sqrt{\frac{2}{C_f}}
\]
(8)

(9)式は火炎の傾きが有効速度比に、また(9)式は有効速度比の二乗に比例することを示す。

一方(9)式は浜田の式と同じで火炎の傾きがフルード数に反比例することを示す。これに対して(8)式では、傾きがフルード数の平方根に反比例するため、フルード数への依存が弱くなることを示す。

(7)式の近似式がそれぞれ(8)、(9)式に分かれる臨界条件は \(a J_L = \sqrt{2} \) でこれは \(\frac{L_D^2}{gD} = f \times \frac{\rho_d - \rho}{\rho_d} \) となる。

実験のデータをもとに、\(\tan \theta \) と \(J \) の関係を求めた。この場合、\(T = 1073^\circ \)K、\(\rho_d / \rho = 0.23 \) とし、平均火炎長(\(L \))は、真横からの挙動を撮影し、火炎面積(\(S \))とクリプ面積(\(Sc \))から \(L = (S - Sc) / 2D \) として求める。\(\tan \theta \) と \(J \) の関係をFig.8に示す。この図において、実験は(7)式において \(a = 0.70 \) として求めた理論式である。

実験の結果ではデータの変化の傾向は、(7)式と類似しているが、実験値はその式の上下に大きく散らばっている。この散らばりの理由は火炎形状が風速の増加にともなってピラミッド形から台形に変化するのに対し、抗力係数を一定にしたこと、更に火炎の中心軸が直線でないときがあるのではなく、これを直線で近似することを忘れていた。
5. 結論

(1) J.R.Welkerからの研究成果を利用して，火災の傾きを有効速度比を用いて表わす方法を示した。この方法による分析では，フールド数（U^2/gD）が大きい場合には，火災の傾きは有効速度比に比例するが，フールド数が小さい場合には有効速度比の二乗に比例する。また後者の場合の近似式は，浜田の式と一致する。

(2) 火災の傾きに関する実験データを上の理論と比較したところ，実験データの全体的な傾向は理論式と一致しているが，データは理論式の近くで大きく散らばっている。この散らばりの理由は，フールド数の增大に伴って火炎形状が，三角形から台形に変化したことなどによると推定された。

(3) クリップ火災の前後に障害物がある場合には火災の形状が変わることが確かめられた。障害物がクリップ火災の風上側にある場合には火炎長が短くなり，その場合火炎の傾き角（水平面からの値）は障害物がない場合よりも大きくなった。

記号

B : クリップ正面幅[m]
C_f : 抗力係数
D : クリップの奥行[m]
f : 火炎の形状係数
F_t : フールド数（$=U^2/gD$）
g : 重力加速度 [m/s²]
L : 火炎の長さ [m]
J : 有効速度比
R_e : レイノルズ数（UD/ν）
S : 火炎の断面積 [m²]
S_c : クリップの断面積 [m²]
T_s : 周辺気流温度 [°K]
T_f : 火炎温度 [°K]
U : 風速 [m/s]
W : 上昇速度 [m/s]
ρ_a : 空気密度 [kg/m³]
ρ_f : 火炎密度 [kg/m³]
α : 鉛直軸からの傾き角
θ : 水平面からの傾き角

参考文献

1) 浜田総：日本火災学会論文集，Vol. 1，41（1952）
2) O.A.Pipkin et. al: I & EC Fundamentals, Vol. 3
 147（1964）
3) J.R.Welker et. al: Fire Technology, Vol. 2,
 No. 2, 122（1965）
4) J.R.Welker et. al: Fire Technology, Vol. 3,
 No. 1, 127（1966）
5) 渋本太郎：安全工学；Vol. 10, No. 3, 143
 （1971）
6) 柳山邦博：消防研究所報告；Vol. 51, 34 （1980）
7) P.H.Thomas et. al: Tenth Symposium
 (International) on Combustion, 983（1965）
Experimental Investigation on the Bending of Wooden Crib Flames

Kunihiro Yamashita
(Received December 2, 1981)

Experimental study is performed to examine the dependence of flame bending on the wind velocity and fire width.

Many wooden cribs were burnt in a cross flow and the configurations of steady-state flames were recorded by using the 8 mm cine movie camera from the side of wind direction. Sometimes, the plate barrier was placed on the floor in front of the crib or at the rear side of crib to examine the effect of barrier on the flame.

Experimental result was compared with two relations which were suggested by Hamada or J.R. Welker et al. In the followings, new method is presented to express the flame bending in terms of effective velocity ratio. As results of this study, it is clarified that Welker’s relation is superior to the Hamada’s relation when experimental conditions are complex and Froude number varies in the wide range.

Also, flame bending (tan θ) is approximated in terms of effective velocity ratio (J) as follows.

\[
\begin{align*}
\tan \theta &= aJ & (aJ \text{ is smaller than } \sqrt{2}) \\
\tan \theta &= a^2 J^2 & (aJ \text{ is greater than } \sqrt{2})
\end{align*}
\]

where

\[
J = \frac{W}{U_\infty} \sqrt{\frac{\rho_f}{\rho_\infty}}
\]

\[
a^2 = \frac{6.06}{C_f \cdot \left(\frac{L}{D}\right)}
\]

- \(\rho_f \) : flame density
- \(\rho_\infty \) : air density
- \(W \) : upward velocity at the flame tip
- \(U_\infty \) : air flow velocity
- \(L \) : flame length
- \(D \) : fuel width
- \(C_f \) : drag coefficient

The latter approximation is shown to be same as the Hamada’s relation.
火災長変動のスペクトル分析

山下 邦博

(昭和56年12月15日受理)

1. まえがき

火災上昇気流及び火災周辺気流の乱流特性を明らかにするための研究の一環として、木材クリップ火災及びヘプタン火災の火災長変動についてスペクトル分析を行なった。火災の形状は外々と変動しており、火災周辺の熱及び気流環境と密接に関係している。岡倉ら G. M. Byramら及び難波らは液体燃料の燃焼状況を16ミリフィルムで撮影分析して火災の形状が周期的変動を繰り返していることを指摘し、周期と燃料容器径の関係を明らかにした。これらの研究とは別に、火災感知器を開発するためにR. Portchthalノ筒井、渡辺ら及びPh. Detricherらは火災周辺の放射照度あるいは燃焼音の時間変動を分析し、火災の形状を変化する場合においてデータ数（N）は512個（約28秒）とし、時間帯としてハニングウィンドウを用い、またラグ数として2×（N/10−1）×Δtの値を用いた。しかしΔtは、データの時間間隔で36秒である。

火災長（L）はその平均値（L）と平均値からの変動量（L'）を用いて1式で表わされる。

\[L = L + L' \] \hspace{1cm} (1)

火災長変動の標準偏差（σL）と変動の強さ（I）はそれぞれ（2）、（3）式で表わされる。

\[σ_L = \sqrt{(L')^2} \] \hspace{1cm} (2)

\[I = σ_L / L \] \hspace{1cm} (3)

2. 実験方法及び分析方法

使用した燃料はヘプタンと木材クリップである。ヘプタンは円形の燃焼容器を使って燃焼させた。燃焼容器の直径は0.09m、0.2m、0.3m、0.4m、0.7m、1.0mの6種類である。木材クリップは正方形（高さ0.2m、含水率は10~12%のもの）でその一辺は0.2m、0.3m、0.4m、0.6m、0.9m、1.35mの6種類とした。ヘプタンの燃焼ではフリーポード（容器の上縁と液面間の距離）は2cmとし、点火から2〜5分後の火災を対象にして分析した。また、木材クリップの燃焼では燃焼前半期の火災を対象にして分析した。これらの火災の変動状況を8ミリカメラで撮影（10コマ/秒）し、1コマづつの火災長を座標読み取り装置で求めた。火災の一環がずれて離れている場合でもそれが非常にややい場合には、その先端まで火災が継続しているとして火災長を求めた。この火災長の時系列データを以下に示す方法でスペクトル分析を行なった。分析においてデータ数（N）は512個（約28秒）とし、時系列としてハニングウィンドウを用い、またラグ数として2×（N/10−1）×Δtの値を用いた。しかしΔtは、データの時間間隔で36秒である。

火災長（L）はその平均値（L）と平均値からの変動量（L'）を用いて1式で表わされる。

\[L = L + L' \] \hspace{1cm} (1)

火災長変動の標準偏差（σL）と変動の強さ（I）はそれぞれ（2）、（3）式で表わされる。

\[σ_L = \sqrt{(L')^2} \] \hspace{1cm} (2)

\[I = σ_L / L \] \hspace{1cm} (3)

（2）式のバーは平均値を示す。また（3）式の変動の強さは、風速変動の平均の強さにならって定義した量である。火災長変動のパワースペクトル（P（τ））は（4）式で定義される自己相関関数（R（τ））をフーリエ変換したものを（5）式で定義される。

\[R（τ）= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} L（t）L（t+τ）dt \] \hspace{1cm} (4)
表 1 火焰長（木造crib, $D = 1.35$ m)

<table>
<thead>
<tr>
<th>T [min]</th>
<th>L [m]</th>
<th>a_L [m]</th>
<th>$\frac{L}{D}$</th>
<th>$\frac{a_L}{L}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.476</td>
<td>0.264</td>
<td>1.093</td>
<td>0.179</td>
</tr>
<tr>
<td>2</td>
<td>1.881</td>
<td>0.258</td>
<td>1.393</td>
<td>0.137</td>
</tr>
<tr>
<td>3</td>
<td>2.133</td>
<td>0.280</td>
<td>1.580</td>
<td>0.131</td>
</tr>
<tr>
<td>4</td>
<td>2.520</td>
<td>0.354</td>
<td>1.867</td>
<td>0.140</td>
</tr>
<tr>
<td>6</td>
<td>2.543</td>
<td>0.344</td>
<td>1.884</td>
<td>0.135</td>
</tr>
<tr>
<td>7</td>
<td>2.648</td>
<td>0.364</td>
<td>1.988</td>
<td>0.137</td>
</tr>
<tr>
<td>8</td>
<td>2.441</td>
<td>0.316</td>
<td>1.808</td>
<td>0.129</td>
</tr>
<tr>
<td>9</td>
<td>2.211</td>
<td>0.289</td>
<td>1.638</td>
<td>0.131</td>
</tr>
<tr>
<td>10</td>
<td>1.758</td>
<td>0.227</td>
<td>1.302</td>
<td>0.127</td>
</tr>
<tr>
<td>11</td>
<td>1.839</td>
<td>0.263</td>
<td>1.362</td>
<td>0.143</td>
</tr>
<tr>
<td>12</td>
<td>1.767</td>
<td>0.268</td>
<td>1.309</td>
<td>0.152</td>
</tr>
<tr>
<td>13</td>
<td>1.664</td>
<td>0.237</td>
<td>1.232</td>
<td>0.142</td>
</tr>
<tr>
<td>14</td>
<td>1.619</td>
<td>0.228</td>
<td>1.199</td>
<td>0.141</td>
</tr>
<tr>
<td>15</td>
<td>1.590</td>
<td>0.212</td>
<td>1.178</td>
<td>0.133</td>
</tr>
</tbody>
</table>

$$P(n)=\int_{0}^{\infty} R(t) e^{-at} dt$$

パワースペクトルと標準偏差（a_L）の関係が成立する。

$$a_L^2 = \int_{0}^{\infty} P(n) dn$$

パワースペクトルを図示する場合にはそれを規準化して $P(n)/a_L^2$ で示す。

3. 実験結果

木材の発火の推移に従って火炎長変動の特性がどのように変わるか調べた。木材クリップの一方が1.35 mの場合に、点火してから1分間の平均長の平均値、火炎長変動の標準偏差などを Table 1 に示す。但し、この値は各々の時刻からそれ以前の約28時間のデータより求めたものである。火炎長は時間の経過に従って増加しており、点火後7分頃は最大に、その後は徐々に減少している。標準偏差もまた火炎長の増加に対応して増加し、燃焼最盛期後には減少している。

木材の火炎長（L/D）は、燃焼最盛期には2.0程度となり、この値は1.1～2.0の範囲で変化している。

表 1 に示すように共に火炎長変動の特性を調べた。火炎長変動の複数性を検討するため、一定の燃焼面積の火炎について2回ずつデータをとり分析した。分析した結果を Table 2 に示す。

木材クリップの無次元の火炎長（L/D）の値は1.6～2.5と、ヘプタン火炎の値（2.7～3.1）よりも小さかった。また木材クリップ火炎長変動の強さ（I）は0.11～0.19で、これもヘプタン火炎の値（0.17～0.22）よりも小さかった。

表 2 に示す火炎長変動についてスペクトル分析を行なった結果の例を Fig. 2. (a)～(j) に示す。この図で (a)～(e) までは木材クリップ火炎のパワースペクトルで、(f)～(j) はヘプタン火炎のパワースペクトルである。木材クリップ火炎のパワースペクトルで、燃焼面積が0.2 mの場合（図の(a)）ではスペクトルのピークは顕著で
ない。これに対して燃焼規模が大きくなると(b)～(e)のように、スペクトルのピークが顕著になった。ヘプタン火炎では燃焼規模の小さい場合(図の(f), (h))では、分析した2回のうち1回だけあるいは2回ともピークが顕著でなかった。燃焼規模が大きい場合には2回ともピークが顕著であった。パワースペクトルのピークが顕著な場合の火炎長変動の周波数毎の時間変化の例をFig. 3に示す。(a)では火炎長が一番短い状態である。(b)では火炎の長さが十分顕著し、そのすぐ下側に1みがみられる。(c)ではそのふらみ部分が上昇し、凹みが明確になる。(d)ではその膨張した部分が急激に上昇し、腹部は細くなっている。(e)では火炎の一部が切れて離れている。(f)では(a)の形と同じになる。このような周期的な火炎形状変動は、図ラーチが指摘したことと一致している。

火炎先端の位置の変動から火炎の上昇速度を推定することが出来る。Fig. 3の場合の上昇速度は1.3～4.7 m/sで、上層にいく程上昇速度が大きくなった。火炎長が増加する場合のデータをもとにして、火炎長と上昇速度の関係を調べたものがFig. 4である。この図で、木材クリップ火炎の上昇速度は、0～6 m/sの範囲で、ヘプタン火炎の場合には、0～8 m/sであった。この図からも上昇速度の瞬間値は非常に変動しており、乱れが大きいことが分かる。

4. 検討
スペクトル分析の結果からスペクトルのピーク値を与える周波数（卓越周波数）と火炎規模の関係を整理したものをTable 3に示す。このうちで燃焼面積と卓越周波数の関係を図示したもののがFig. 5である。同一面積であれば木材クリップ火炎の卓越周波数はヘプタン火炎の周波数より約2倍高いことが分かる。図中の曲線はR.Portechtがエタノール火炎に対して放射照度の分析から得た結果であり、今回の実験の結果をその傾向に、ほぼ一致している。卓越周波数と燃焼面積の関係は、両対数目盛では傾きが－1の直線で近似される。また、Table 3から火炎長と卓越周波数の関係を示したものがFig. 6である。木材クリップの形状は方形状で、ヘプタンの燃焼容器の形状（円形）と火炎の形状が異なるにもかかわらず、2つの火炎の周波数はほぼ同一の曲線にのっていることがある。火炎長と卓越周波数の関係は(7)式で表される。

\[n = \frac{k}{\sqrt{L}} \]

(7)式

kの値は燃料の種類によって異なるが、平均すると約2.5になる。
Table 2 Flame length of wooden cribs and heptane

<table>
<thead>
<tr>
<th>D [m]</th>
<th>\bar{L} [m]</th>
<th>σ_L [m]</th>
<th>$\frac{\bar{L}}{D}$</th>
<th>$\frac{\sigma_L}{\bar{L}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.331</td>
<td>0.047</td>
<td>1.65</td>
<td>0.141</td>
</tr>
<tr>
<td>0.2</td>
<td>0.358</td>
<td>0.045</td>
<td>1.78</td>
<td>0.127</td>
</tr>
<tr>
<td>0.3</td>
<td>0.665</td>
<td>0.093</td>
<td>2.23</td>
<td>0.139</td>
</tr>
<tr>
<td>0.3</td>
<td>0.741</td>
<td>0.089</td>
<td>2.47</td>
<td>0.120</td>
</tr>
<tr>
<td>0.4</td>
<td>0.843</td>
<td>0.098</td>
<td>2.32</td>
<td>0.116</td>
</tr>
<tr>
<td>0.4</td>
<td>0.931</td>
<td>0.105</td>
<td>2.33</td>
<td>0.112</td>
</tr>
<tr>
<td>0.6</td>
<td>1.217</td>
<td>0.170</td>
<td>2.02</td>
<td>0.140</td>
</tr>
<tr>
<td>0.6</td>
<td>1.497</td>
<td>0.169</td>
<td>2.49</td>
<td>0.113</td>
</tr>
<tr>
<td>0.9</td>
<td>1.791</td>
<td>0.337</td>
<td>1.99</td>
<td>0.188</td>
</tr>
<tr>
<td>0.9</td>
<td>1.9a0</td>
<td>0.339</td>
<td>2.17</td>
<td>0.174</td>
</tr>
<tr>
<td>1.35*</td>
<td>2.543*</td>
<td>0.344*</td>
<td>1.88*</td>
<td>0.135*</td>
</tr>
<tr>
<td>1.35*</td>
<td>2.648*</td>
<td>0.364*</td>
<td>1.99*</td>
<td>0.137*</td>
</tr>
</tbody>
</table>

* Data are same as in Table 1.

今回の実験データをもとにして壁面数（n）を含んだ無次元量（ストローハル数）について検討する。ストローハル数は代表的な流量（W）を用いて(8)式で与えられ、円柱の伴流域に生じるカルマン渦の発生速度を求めるときに用われる値である。

$$ S_t = \frac{nD}{W} \tag{8} $$

この値はカルマン渦の場合には、0.20になることが知られている。火災長変動のストローハル数を求めるのに火炎の代表速度として火炎先端の値を用いる。火炎先端の上昇速度は、P.H.Thomasが求めたように火炎温度（T_f）と周囲温度（T_m）の温度差（$T_f - T_m$）と平均火炎長（\bar{L}）を使って(9)式で表わされる。

$$ W = 0.36 \times \sqrt{2g(T_f - T_m) \times \bar{L}} \tag{9} $$

このWの値と卓越周波数（n）からストローハル数を計算したものを同じく Table 3 に示す。クリブ火炎のストローハル数は0.55であり、ヘアタン火炎の場合には0.3程度である。この値は燃料によって異なるが、燃料の大きさを変えてもほぼ一定である。
Fig. 2 Spectra of flames.
ストーブの数が多く一定になることから、火災長変動は湯の発生に関係していることが予想される。
火災の周囲にはドーナツ状の渦（渦輪）が形成されることが知られており、この渦の生成・消滅が火災長変動に関係すると考えられる。Fig. 3 の火災形状の変化から火災の周辺に渦輪が形成され、それが成長しながら上昇する様子がうかがえる。特定の高さでみると、渦輪が通過する場合には火災は収束して細くなり上昇速度は速くなる。これに対し渦輪が通過した後は火災の半径は大きくなり、上昇速度は小さくなる。このような変化は、一定の位置に渦輪が形成され、その強さが強弱をくり返していることによると見做すことができる。渦輪の強弱によって火災長が周期的に変動する現象の単純化したモデルを Fig. 7 に示す。渦輪の小断面の円周長を物体が剛体回転するように、渦の強さが変動していると考える。

Fig. 3(a)～(f) Pulsation of flame. (wooden crib, D = 0.9 m)

Table 3 Frequencies of pulsating flame

<table>
<thead>
<tr>
<th>D [m]</th>
<th>L [m]</th>
<th>n</th>
<th>W [m/s]</th>
<th>$\frac{n \cdot D}{W}$</th>
<th>$\frac{n \cdot L}{W}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>heptane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>2.7</td>
<td>1.3</td>
<td>4.27</td>
<td>0.30</td>
<td>0.82</td>
</tr>
<tr>
<td>0.7</td>
<td>2.0</td>
<td>1.7</td>
<td>3.68</td>
<td>0.32</td>
<td>0.92</td>
</tr>
<tr>
<td>0.4</td>
<td>1.5</td>
<td>2.0</td>
<td>3.18</td>
<td>0.25</td>
<td>0.94</td>
</tr>
<tr>
<td>0.3</td>
<td>0.8</td>
<td>2.7</td>
<td>2.32</td>
<td>0.35</td>
<td>0.93</td>
</tr>
<tr>
<td>0.2</td>
<td>0.58</td>
<td>3.0</td>
<td>1.98</td>
<td>0.30</td>
<td>0.88</td>
</tr>
<tr>
<td>0.09</td>
<td>0.27</td>
<td>4.0</td>
<td>1.35</td>
<td>0.26</td>
<td>0.80</td>
</tr>
<tr>
<td>wooden crib</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.35</td>
<td>2.4</td>
<td>1.5</td>
<td>4.02</td>
<td>0.50</td>
<td>0.89</td>
</tr>
<tr>
<td>0.9</td>
<td>1.85</td>
<td>2.0</td>
<td>3.54</td>
<td>0.50</td>
<td>1.04</td>
</tr>
<tr>
<td>0.6</td>
<td>1.30</td>
<td>2.7</td>
<td>2.96</td>
<td>0.56</td>
<td>1.18</td>
</tr>
<tr>
<td>0.4</td>
<td>0.9</td>
<td>2.9</td>
<td>2.47</td>
<td>0.47</td>
<td>1.05</td>
</tr>
<tr>
<td>0.3</td>
<td>0.7</td>
<td>3.5</td>
<td>2.18</td>
<td>0.48</td>
<td>1.18</td>
</tr>
<tr>
<td>0.2</td>
<td>0.34</td>
<td>5.0</td>
<td>1.52</td>
<td>0.66</td>
<td>1.18</td>
</tr>
</tbody>
</table>
Fig. 5 Relation between pulsating frequency and burning area

Fig. 6 Relation between pulsating frequency and flame length.

Fig. 7 Simplified ring vortex model for flame pulsation.

渦輪の移動速度 \(V \) は渦輪の大半径 \(R \) と小半径 \(a \) を用いて\(^\text{(10)}\) 式で表される。

\[
V = \frac{K}{4\pi R} \left[\ln \left(\frac{8R}{a} - 1 \right) \right]
\]

この式で \(K \) は循環で満度 \(\omega \) を用いて \(K = \pi a^2 \omega \) で表される。この渦輪の移動速度が火炎の上昇速度に等しく、かつ渦輪の回転振動数 \(n \) が火炎長変動の周波数に等しいとして卓越周波数を求めれば\(^\text{(11)}\) 式に

\[
n = \frac{RW}{\pi a^2} \times \frac{1}{\left(\ln \left(\frac{8R}{a} - 1 \right) \right)}
\]

この式で、\(R = 0.40 \text{m}, a = 0.30 \text{m}, W = 3.00 \text{m/s} \) とすれば、周波数 \(n \) は \(n = 2.00 \text{Hz} \) となる。渦輪の大半径 \(R \) と小半径 \(a \) がそれぞれ火炎の代表長さ \(D \) に比例する \(R = bD, a = cD \) と仮定する。この場合周波数 \(n \) は上昇速度 \(W \) と火炎の代表長さ \(D \) との比 \(W/D \) に比例し、比例係数 \(K' \) は\(^\text{(12)}\) 式で表される。

\[
K' = \frac{b}{\pi c^2} \times \frac{1}{\left(\ln \left(\frac{8b}{c} - 1 \right) \right)}
\]

一方、ストローハル数 \(\left(S_f \right) \) が一定値 \(K \) になる場合には周波数は次式で求められる。

\[
n = K \times \frac{0.36 \times \sqrt{\frac{2g (T_e - T_a)}{T_e} \times \frac{L}{D}}}{\sqrt{D}}
\]

この式、及び\(^\text{(7)}\) 式は無次元の火炎長 \(L/D \) が一定になる場合には、周波数は火炎の代表長さ \(D \) の平方根に反比例することを示す。この結果は実験の結果をよく説明し、また、G.M. Byramら\(^\text{(3)}\) が次元解析で得た結果と一致する。

5. 結論

（1）火炎長変動についてスペクトル分析を行なった結果、スペクトル曲線にピークがみられ、火炎長が周期的に変動していることが確かめられた。

（2）木材クリプ火炎及びヘプタン火炎については、燃焼面積が \(10^2 \times 2 \times 10^4 \text{cm}^2 \) の範囲であれば火炎長変動の卓越周波数は \(1 \sim 5 \text{Hz} \) である。

（3）火炎長変動の周波数は、火炎の代表長さ \(D \) の増加に対し、ほぼその平方根に反比例して減少する。

（4）火炎長変動のストローハル数は燃焼規模が変化しても燃焼が等しいければほぼ一定値になる。

記 号

\[
\begin{align*}
D & : \text{木材クリプの一辺の長さ} \\
\rho & : \text{重力加速度} \left[\text{m/s}^2 \right] \\
I & : \text{火炎長変動の強さ} \\
L & : \text{火炎長} \left[\text{m} \right]
\end{align*}
\]
L ：火災長の平均値 [m]
L' ：火災長の平均値からのずれ [m]
N ：データ数
n ：周波数 [1/s]
$P(n)$ ：パワースペクトル [m3/s]
$R(x)$ ：自己相関関数
S_r ：ストーハル数 ($= nD/W$)
T_f ：火災温度 [K]
T_w ：周囲気流の温度 [K]
Δt ：データの時間間隔 [s]
V ：渦輪の移動速度 [m/s]
W ：上昇速度 [m/s]
σ_L ：火災長変動の標準偏差 [m]

参考文献

1）岡ら，矢沢：日本火災学会論文集，Vol.5，No.2
2）G.M.Byram and R.M.Nelson Jr.：Fire Technology
 Vol. 6，102（1970）
3）安全工学協会タンク火災実験検討委員会：安全工学，Vol. 19，No. 3，152（1980）
4）R.Portch：Combustion Science and Technology,
 Vol. 10，73（1975）
5）筒井勇次郎：消防研究所報告，第21号 1（1961）
6）渡辺，竹元：未発表
7）Ph. Detriche and J.C. Lanore：Fire Technology,
 Vol. 16，No. 3，204（1980）
8）Ph. Thomas et al.：Tenth Symposium (International) on Combustion，983（1965）
9）H.Lamb：Hydrodynamics（sixth edition）：Cambridge University Press，241（1932）
Spectral Analysis of the Fluctuations of Flame Lengths

Kunihiro Yamashita

(Received December 15, 1981)

Spectral analysis of the fluctuations of flame lengths were performed to study the turbulent characteristics of air flow above and around the fires. Rectangular wooden cribs and heptane in the circular vessel were burnt in the quiescent air. Characteristic length of wooden cribs and fuel vessels were changed in the range from 0.09 to 1.35 m. The fluctuations of flame configuration were recorded by the use of a 8 mm cine movie camera, and flame lengths were measured in every frame of the 8 mm cine movie films by using the coordinate-reading apparatus.

The time-sequence-data were analyzed with respect to frequency spectrum.

It is shown that the spectral curves have a predominant peak, indicating that the flame lengths tend to vary in a periodic manner. The strouhal number obtained appears to be constant which leads to the conclusion that the pulsating frequency of flame is inversely proportional to the root of the characteristic length of fire.
石油タンク隅肉溶接継手部のき裂発生に関する実験的考察

亀井 浅道・秋山 伸司*

(昭和56年12月15日受理)

i. 緒言

石油タンクの側板とアンニューラー板とのT型継手の隅肉溶接止端部には、構造上局所的に高い応力・歪が集中的に作用する。過去の破壊による管内の流出事故例をみると、この部位からの破壊が大半を占めている。石油タンクに作用する大荷重としては管内の圧力によるものと地盤によるものと考えられる。これらは変動荷重として作用し、部材に疲労損傷を生じさせる。部材中に生じる応力・歪の大きさは地盤の沈下や部材の腐食による減肉状態などにより経年的に変化する。

著者らは先に錆鉄し荷重を受けるときT型継手近傍に生じる局所的な変形挙動を調べ、さらに隅肉溶接止端部の低サイクル疲労強度を負荷条件との関係で実験的に検討した。

本報は隅肉溶接部の亀裂発生挙動を試料の表面状態との関係で調べ、き裂発生抵抗の評価方法を提案したものである。

2. 供試材

供試材は焼入れ、焼もどしされた圧力容器用鋼板（JIS G 3115 SPV50Q）である。板厚は20mmと9mmで、次節に述べるように前者を側板部として、後者をアンニューラー部として使用した。化学成分をTable 1に、機械的性質をTable 2に示す。

3. 溶接条件と試験片形状

実験片形状をFig. 1に示す。継手は被覆アーク溶接

<table>
<thead>
<tr>
<th>Table 1 Chemical Composition</th>
<th>Wt. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Si</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>0.14</td>
<td>0.31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2 Mechanical Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>thickness (mm)</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Annular Plate</td>
</tr>
<tr>
<td>Shell Plate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3 Welding Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>path No.</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>1, 4</td>
</tr>
<tr>
<td>2, 3, 5, 6</td>
</tr>
</tbody>
</table>

* 研修生（日本工業大学）
で、手溶接（日本溶接協会1級技能者のによる）により行われた。開先形状をFig. 2に示す。積層方法は外側、内側共に3パスでそれぞれの関長をFig. 3に示す。各パスの溶接条件をTable 3に示す。溶接部はグラインダーにより溶かしに仕上げられた。

4. 試験方法

定変位型の低サイクル曲げ試験機（荷重200kulg・m）を用いて試験片のアンカー板に曲げ荷重を作用させた。側板部を固定し、側板の内側表面から215mmの位置でアンカー板を試験機の荷重作用端に取り付けた。全疲労試験を通じて荷重作用端の変位は軽くとし、変位振幅を20mmとした。（取り付け状態は文献3,4）参照。）負荷速度は約0.033Hzである。

き裂発生の確認およびき裂長さの測定は目視にて行い、この確認を容易にするために適宜負荷を停止し、カラーチェックを行った。また、き裂の板厚方向への拡大長さは加熱酸化着色法によった。その手順としては、まず試験片を取り出し、ガスバーナーにて青色酸化させたのち再び試験機に取りつけ、酸化変態に圧縮によるムラが生じないように繰返し荷重を負荷し破断させた。

5. 実験結果および考察

5.1 表面の粗さ状態とき裂の発生挙動

表面に線固孔などの欠陥が存在すると疲労強度が低下することが知られている14。側板とアニューレ板との隅部溶接部近くの表面がき裂の発生挙動を与える影響を調べる目的で、ここでは次のような異なる表面粗さの試験片を用意した。

① グラインダーにより研磨した試験片 ② ①の処理後エメリーロー紙の240番まで研磨した試 ③ ②の処理後エメリーロー紙の600番まで研磨し、さら にバフ研磨した試験片

グラインダー研磨は溶接によるスパッタの除去と止端部の整形のために行っていた。①の試験片の破断状態をFig. 4(a)に示す。破断までの繰返し数は258サイクルである。き裂はグラインダーの前に沿って発生していることがわかる。破断部は全体としてステップ状を呈している。これはき裂が複数の場所で発生しそのそれぞれがグラインダーの前に沿って成長し、2つのき裂がオーバーラップしたのち合体したことを示している。Fig. 4(b)は表面粗さが②の試験片の破断状態である。繰返し数は294サイクルであった。この場合はFig. 4(a)に認められるほど大きなき裂のステップは現れていない。しかし、き裂発生箇所はこの場合も複数であり、最終破断き裂の近くに多くのき裂が認められる。Fig. 4(c)は③の試験片に関するもので、破断き裂は346サイクルであった。破断き裂のステップは小さく、き 裂の数はFig. 4(b)におけるものより少ない。

Fig. 4(a)～(c)に示されるように表面粗が粗ほど破断寿命は短い傾向にある。Fig. 5(a)～(c)は繰返し数がほぼ100サイクルに於る①、②、③の試験片のき 裂の状態を示したものである。（撮影は荷重作用点の位 置を中立点にして行った）写真は、き裂の識別を容易 にするためカラーチェックを使用している状態にする ものである。黒ずんで見える部分はき裂に浸し込んだ 赤色塗料が白色の現像液をスプレーした表面に浸出 たもので、そこからき裂が存在することを示している。Fig. 5(a)は①の試験片におけるもので、多数のき 突裂が認められ、最大き裂長さは13.5mmに達している。Fig. 5(b)は②の試験片の場合で、多くのき裂が発生した。

*）着色液を用いてき裂の存在を確認する試験方法である。試験方法としては次の通りである。まず、試験片表面に塗布して、次に赤色 の浸透液をスプレーし、乾燥後塗料液にて表面に着色塗料を除去した。最後に現像液をスプレーしてき裂中に浸透していた塗料を浮き上がらせた。
Fig. 4 Configurations of the fracture
(a) coarse grinding surface
(b) grinded surface with 240 grit
(c) polished surface

しているが、Fig. 5 (a) に破れてき裂の開口量は少なく、また最長き裂長さも10mmで、多少短い。Fig. 5 (c) は③の試験片に対するものである。この場合は最長き裂長さ6.5mmで、き裂開口量は上記の①におけるものより更に少ない。また、き裂の発生数が少ない。

表面に発生したき裂の板厚方向への侵入状態の1例をFig. 6に示す。Fig. 6 は③の試験片に211サイクル負荷したのち酸化着色を行い、再び負荷を作用させて破断させた破面である。暗黒色部が酸化着色部を表わしている。（試験方法は文献4を参照）図において、最長き裂長さは約15mmで板厚方向へ約2mm侵入している。その近くに認められる表面き裂は半円形に近いものから極めて偏平なものまで存在する。各き裂は、211サイクルの時点で必ずしも同一面内にはないため、最
5.2 き裂発生抵抗の評価

前節に述べたように、き裂の発生は溶接止端部に集中している。この部分は溶接による残留応力、金属組織の変化およびビード形状が関与する応力集中、研磨粗さなどの影響が混在するため、き裂の発生に対する抵抗（き裂発生限界強度）を評価することは容易ではない。ここではき裂発生抵抗の評価法の1つの試みとして、溶接止端部近傍に人工ビットを作り、このビットからのき裂発生時期と溶接止端部からのそれとの比較を行ってみた。

はじめに電解法により作成した比較的小さなビットについて行った。Fig. 7はグラインダーによる粗い研磨表面にビットを導入した場合のき裂発生状況である。

ビットは直径3mm、深さ1mmで溶接止端部からビットの中心までの距離は5mmである。写真は141サイクルにおけるもので、溶接止端部からはグラインダーの目方に沿ってき裂が発生している様相が見られる。この試験片は276サイクルで破断したが、ビットからのき裂の発生は最後まで認められなかった。パワ研磨した試験片の溶接止端部から2.5mmの位置に電解ビット（直径4mm、深さ2mm）を発生させた場合には82サイクルでビット底にき裂の発生が認められた。しかし、最終破断はこのビットを通らなかった。

次にドリルによって穴をあけ、加工層をアノード溶解させたビットについて調べた。溶接止端部からの距離7mm、直径、深さ共に4mmとした場合にはビットからのき裂の発生は起こらなかった。同じ直径、深さのビットを溶接止端部から5mmの位置にあけた場合は、134サイクルでビット底にき裂が認められ、最終破断はこのビットを横切った。これら2つのケースから、溶接止端部のき裂発生抵抗はおよそ直径4mm深さ4mmのビットが溶接止端部から6mmの位置に存在する場合と同程度であると考えられる。

溶接止端部から8mmの位置に直径5mm、深さ5mmのビットをあけた場合には約140サイクルで穴の底部と側面にき裂が認められ、149サイクルで穴の様にしてき裂が現れた。縦返し数と共にこのき裂が拡大してゆき211サイクルでその前方に発生し、成長していた別のき裂が合体した。この時点で酸化著色し、き裂の厚板方向への浸透状態を調べた。これをFig. 8に示す。曲げ変形であるため、穴の側面から発生したき裂は板表面に近い程度成長が速いことがわかる。また穴の底部に認めたき裂は板厚方向にはほとんど進行していない。
Fig. 8 Fatigue crack emanating from a pit made by drilling (dia. = 5 mm, depth = 5 mm)

隣接する2個のビットを用いて評価したのが次の2つのケースである。いずれも直径、深さ共に4 mmで単独の場合と同様である表面はアノード溶解を行った。ビット中心間隔を8 mm、溶接端部からの距離を5 mmとした場合は50サイクルの時点で底面に多くのはき裂が認められた。このとき裂をプラスチック・レイプカットとして転写し、走査型電子顕微鏡で観察した。その1例をFig. 9に示す。転写であるため写真ではき裂部に侵入したプラスチックが浮ようっている。その後破裂は經続されたが穴からのき裂の進展には、最終破断は溶接端部を通って337サイクルで生じた。疲労破壊のサイクルにおけるき裂状態をFig. 10に示す。ビット中心間距離を6 mmとし、溶接端部からビット中心までの距離を6 mmとした場合には、50サイクルで一方の穴縁からき裂が見られ、他方の穴に向って拡大している。90サイクルではもう一方の穴からもき裂が発生した。両き裂は互いに接近して133サイクルでつながった。その後き裂はお互いの穴は反対側の穴縁からも生じ、拡大・伝播した。このき裂の近傍には他のき裂の発生はなかった。この時点で酸化着色を行い、き裂の侵入の様相を調べた。これをFig. 11に示す。単独き裂の場合とは異なりビット底から板厚方向にもき裂拡大しているのがわかる。これら2つの実験結果からは、

Fig. 9 Microscopic fatigue cracks at the corner of a pit (plastic replica)

Fig. 10 Specimen with two pits (dia. = 4 mm, depth = 4 mm)

Fig. 11 Fatigue crack starting from two pits

溶接端部のき裂の発生抵抗は両ケースの中間値をとっているが、直径、深さ共に4 mmのビットが中心間距離7 mm離れて存在する場合と同等であると評価してよいであろう。

単独ビット、2個のビットによる実験結果をTable 4に示しておく。

5.3 試験片表面におけるき裂の伝播速度

最大き裂長さに着目して、その長さとサイクル数の関係を示すとFig. 12のようになる。これはエメリーユーに240番まで研磨した試験片(T.P.No.=1-6,1-7)についての測定結果である。図に示されるように、見掛け上ほとんど拡大しない期間、スムーズに拡大する期間およびステップ状に急増する期間とが存在する。ほとんどの増大しない期間のき裂をカラーチェックで連続的に観察してみると、き裂の軸方向に細かく増大してゆくことがわかる。これはこの期間にき裂の板厚方向へ
Table 4 Position of Cracking

<table>
<thead>
<tr>
<th>No.</th>
<th>Roughness Surface</th>
<th>Process</th>
<th>Number</th>
<th>Distance between bits (mm)</th>
<th>Diameter (mm)</th>
<th>Depth (mm)</th>
<th>Distance from Toe (mm)</th>
<th>Crack Initiation</th>
<th>Final Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>coarse grinding</td>
<td>anodic</td>
<td>1</td>
<td>–</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>Toe</td>
<td>Toe</td>
</tr>
<tr>
<td>2</td>
<td>polishing</td>
<td></td>
<td>1</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>3.5</td>
<td>Pit</td>
<td>Toe</td>
</tr>
<tr>
<td>3</td>
<td>drill</td>
<td></td>
<td>1</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>Toe</td>
<td>Toe</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>1</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>Pit</td>
<td>Pit</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>1</td>
<td>–</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>Pit</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>Pit</td>
<td>Toe</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>Pit</td>
<td>–</td>
</tr>
</tbody>
</table>

Fig. 12 Relation between the maximum crack length and the loading cycles. Two specimens were tested under the same condition.

Table 5 Crack Initiation and Cycles to Failure

<table>
<thead>
<tr>
<th>T.P. No.</th>
<th>Roughness</th>
<th>Crack Initiation</th>
<th>Cycles to Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>final polishing</td>
<td>101</td>
<td>381</td>
</tr>
<tr>
<td>1-4</td>
<td></td>
<td>60</td>
<td>346</td>
</tr>
<tr>
<td>1-6</td>
<td>240 grit</td>
<td>45</td>
<td>294</td>
</tr>
<tr>
<td>1-7</td>
<td></td>
<td>63</td>
<td>348</td>
</tr>
<tr>
<td>1-9</td>
<td>coarse grinding</td>
<td>38</td>
<td>335</td>
</tr>
<tr>
<td>2-1</td>
<td></td>
<td>30</td>
<td>258</td>
</tr>
<tr>
<td>1-8</td>
<td>with pit</td>
<td>37</td>
<td>276</td>
</tr>
</tbody>
</table>

Fig. 13 A crack occurred along the scratches due to coarse grinding.

の侵入が起きていることを示している。耐が上のステップ状の施加は長さつき裂にその前方のき裂が合体して生じたものである。Fig. 12においてT.P.No. 1 – 6と1 – 7とでは、き裂発生時期と破断時期はほぼ同じサイクル値となっているが、途中ではかなり異なる様相を呈している。これは既に述べたように、き裂の拡大が単調に行われるものではないことに起因している。

Table 5に関し発生時のサイクル数とき裂長さ、および破断サイクル数に関する実験結果をまとめておく。概して組合表面はとき裂発生および破断までのサイクル数は少ないことがわかる。発生時のき裂はFig. 13に示されるように表面をもしくはすべて線に沿って発生しており、識別される時点のき裂長さは数ミリメートルであった。表面粗さとこのき裂長さの間にはTable 5のデータに関する限り相関性は認められない。

5.4 板厚方向へのき裂の侵入

Fig. 6のような破断面を詳細に観察すると破断面に
垂直方向の２次き裂や段差が認められる。このようなき裂は板に平行な傾斜非金属介在物が関与して発生するものと思われる。Fig. 14 はアニュラ板の上表面から板厚方向に進行してきた主き裂先端とその前方に存在する介在物との間にき裂が発生した状態を示している。この状態から更に繰返し荷重を受けると、き裂は介在物の先端から板に平行に進行し、ある程度進展するとそのき裂の下面から再び板厚方向へのき裂が発生する。このような板厚方向へのき裂侵入機構が破面に垂直な方向のき裂や段差を発生させる訳である。

5.5 破断部近傍の硬さ分布
本実験結果をみると溶接止端部からのき裂発生が顕著である。この部位は前述のようにピード部形状による応力集中の他に溶接による組織変化、欠陥、残留応力など強度を低下させる因子の影響が無視できない。ここでは組織変化の程度を評価するため硬度を調べてみた。

Fig. 15 (a), (b) に破断部側の板断面における硬度

*) このような現象は事故タンクの破断面にも認められている。
Fig. 16 Distribution of hardness in the vicinity of the fracture surface (cross section)

Fig. 17 Distribution of hardness along the free surface of the bead (cross section)

Fig. 18 Distribution of hardness on the inside surface of annular plate

を示す。アニューラー板側に着目してみると板の中央部が表面より硬く、タンク内側表面に近い部分は外側表面に近い部分より硬い。いずれの部分も破断面近くで急に硬度が高くなっていることが示されている。側板側をみるとタンク内側側の硬度が高い。全体的にアニューラー板側ほどに部位による高低は認められないが、破面近くで多少高くなる傾向がある。Fig. 16は破面近の様相を詳細に調べたものである。図において、印と△印はそれぞれタンク内側表面上の破断位置から側板側に0.2mmおよび0.7mm離れた位置で板表面に垂直方向に測定していたものである。□印は破断面の凹凸に沿って破面から0.2mmの位置で測定したものである。結果をみると破断面に近い位置では明らかに高い値を示している。Fig. 17は溶着金属の自由表面から0.1mmの位置に沿って測定したものである。横軸は破断部からの距離である。この場合も破断部近傍で高硬度を示している。Fig. 18はアニューラー板側の板内表面の硬度分布である。破断部に向って急激な硬度の上昇が認められる。

このように破断部近傍でかなり高い硬度を示していることは、この部位でき裂の発生が顕著であることの

*) Fig. 18に於る説明図中のx軸を含む面
6. 結 論

60kgf/mm²級の高張力鋼を用いてT形接合の隅肉溶接
部近傍の低サイクル疲労によるき裂発生挙動を調べて
みた。その結果、次の知見が得られた。
1. 隅肉溶接部の表面が粗いほど早期にき裂が発
生し、破断寿命は短い。グラインダー仕上げ試片に
おいてはグラインダーの目盛に沿ってき裂が発生した。
2. 表面処理後発生したき裂は、発生初期に既にかな
り長いものが認められる。このき裂の板厚方向への
拡大は極めて少ない。

引き裂は複数の箇所で生じ、引き裂の巨視的伝播は引き
裂先端からの拡大と他の引き裂との合体により行われ
る。
4. 浅い引き裂では、概して引き裂の拡大は板厚方向に進
行しやすい。
5. 引き裂の発生は溶接部近傍に集中する傾向が認めら
れる。これは、この部位が局所的に高硬度であるこ
ととも関係があると思われる。

溶接腐食部は幾何学的形状に基づく応力集中、溶接
による組織変化、欠陥、残留応力など複数の要因によ
り引き裂発生に対する抵抗が減少している。しかし、そ
れぞれの因子による影響度を個別に評価することは容
易ではない。本報では溶接直部近くに引き裂発生抵抗
の異なる人工ビットを導入して溶接直部の割れ抵抗の
評価を試みた。実験により、本試験片の場合は直部に
おける引き裂の発生限界強度はたとえば直部から6 mm
の位置の直径、深さ約4 mmのビットにおけるものと
同程度という結果が得られた。今後、ビットを有する
平板の低サイクル挙動に関する知見を導入することに
より、このような評価方法は実用タンクの維手強度の
評価を適切に行う際の有用な手段となるであろう。

謝辞: 本研究に使用した材料は、甲陽建設工業㈱に
提供していただいたものである。記して謝意を表する。

引用文献
1) 壱井浅道 消研報告 46, (1978) 7
2) 壱井浅道 消研報告 47, 1 (1979)
3) 壱井浅道 消研報告 47, 1 (1981)
4) 壱井浅道 圧力技術 19-1, 10 (1981)
5) 消防庁 危険物技術基準委員会編：1978年宮城県
沖中地震報告書。
Experimental Study on the Crack
Initiation along the Toe of
the Fillet Welded
Joint of Oil Storage Tanks
Subjected to Cyclic Loading

(Abstract)

Asamichi Kamei and Shinji Akiyama*
(Received December 15, 1981)

It is well known that local high stress and/or strain is concentrated along the toe of the fillet welded joint of oil storage tanks when they are subjected to cyclic loadings.

In this report, the crack initiation behaviors are investigated in relation to the roughness of the toe and an estimation method of crack initiation resistance is proposed. As the results of experiments, the following remarks are concluded.

(1) The fatigue life of the specimen with rough surface is shorter than that of the specimen with polished surface. In the specimens machined by coarse grinding, cracks are initiated along the scratches.

(2) At the early stage of the crack initiation due to the scratch, the flaw is extended very little in the direction of plate thickness compared with the length on of it appeared on the plate surface.

(3) The shallow flaw has the tendency to extend toward the plate thickness.

(4) Many cracks are initiated along the toe of the welded joint and macroscopic crack is formed as the result of their connection.

* Student of Nippon Institute of Technology
航空機客室火災のモデル化に関する研究
－航空機客室内における熱源、開口部等の位置及び形状の火災気流の流動性状に及ぼす影響－
（概要）
佐藤 晃由
（昭和56年12月15日受理）

航空機客室火災の数学的モデルによる幾つかの計算結果と実験結果との比較は、主として、火災気流速度に関して行われているが、開口部での空気流量を含め、空気の速度に関するものは不十分である。本研究では、特に、開口部での空気流量に対する熱源、開口部等の位置及び形状の影響に関して、計算結果と比較するための実験を行ない、また、三次元偏微分方程式を用いたフィールド・モデルに基づく火災気流の計算結果の一部との比較も行なった。
An Approach to Modeling of Aircraft Cabin Fire Phenomena
— The Ventilation Effect of Location and Geometry of the Heat Source and Opening in an Aircraft Passenger Cabin —

Kohyu Satoh
(Received December 15, 1981)

In a comparison between theoretical and experimental results of an aircraft passenger cabin fire, the behavior of fire gas, such as the air velocity field and ventilation at cabin openings, has not been fully investigated due to a lack of experimental data. (Gas temperature fields have been mainly investigated.) The present study specifically addresses the experimental ventilation problem of an aircraft passenger cabin fire. The comparison between theoretical and experimental results is also partly conducted.

1. Introduction

In an accidental crash, the body of an aircraft is easily damaged and there are many possibilities of resultant fire caused by an accident since an airplane carries an enormous volume of combustible fuel. In addition, seats and baggage obstruct the rapid evacuation of passengers, for whom the space available in the cabin is relatively small. Therefore, there is a great need to understand the flow behavior of hot smoke and toxic gases in the passenger cabin.

Gas dynamics of an aircraft passenger cabin fire have been investigated by MacArthur et al.1,2), whose third version computer code (known as DACFIR. 3) adopts a method called the three zone quasi-distributed model shown in Fig. 1. However, this approach is substantially based on two dimensional analysis and does not take into account the effects of location and geometry of the heat source and openings on gas flow in the cabin.

![Diagram](attachment:image.png)

Fig. 1 Three Zone, Quasi-distributed Model of the Cabin Gas Motion for DACFIR Version 3.11
Another numerical analysis for aircraft passenger cabin gas dynamics has been investigated by the Fire Research Group, including the author, of the University of Notre Dame\(^3\). However, their analysis as shown in Fig. 2 is, at present, based on a “two dimensional” differential field model (known as UNSAFE\(^4\)), although a “three dimensional” code for this problem is also under preparation and eventually will be available. Therefore, the geometry of fire source and the opening width in a direction perpendicular to the two dimensional plane are not taken into account in the two dimensional code mentioned above. In addition, the numerical results by UNSAFE code, as well as by DACFIR. 3, are compared with experimental data of the Federal Aviation Administration (F.A.A.) et al. However, those data are not always fully prepared so as to be compared with the calculated results. Consequently, more detailed experimental data, especially data of wind velocities, are needed for the modeling of aircraft passenger cabin fire phenomena. The present study specifically addresses the experimental venting problem of an aircraft cabin fire.

The air mass flow rate at an opening (or openings) of a small model cabin was measured as functions of the opening geometry, fire source geometry, fire source location and fire source strength. In this study, the heat source strength was relatively small compared with the cabin volume, judging from the temperature rise in the cabin. The heat source dimension was also small compared with the whole area of the floor. The effect of the angle of an inclined cabin on the gas flow was also investigated under a scenario, that is, the fuselage of the aircraft has crashed down into the ground at some angle \(\theta\). Finally, some of these experimental results were compared with the numerical results calculated by the three dimensional code, which is a refined and extended version of UNSAFE. In this code, three dimensional geometry for seats and the angle of the aircraft body inclined from the ground can be taken into account, although the calculational results of these two factors, are the subject of another paper.

2. **Experimental Apparatus**

A rectangular “Model Cabin”, built of plywood with a thickness of 13 mm had a cross section of 0.8 m by 0.8 m and a length of 3.6 m; therefore a volume of 2.3 m\(^3\), as shown in Fig. 3. The ceiling was partly, above the fire source, lined with a thin (0.5 mm in thickness) steel plate with a dimension of 0.8 m by 0.8 m. A “natural gas” burner with a burning area of 0.18 m in length \(L_h\) and 0.18 m or 0.36 m in width \(W_h\), was placed at one of three locations, i.e., (A), (B) and (C) in Fig. 3, on the “Cabin” floor. The heat source strength of the gas burner was estimated from the gas flow rate in a gas tube and the heat release rate of “natural gas” —
11,000 kcal/Nm³ — although it was not always certain whether the gas burnt completely. However, in most cases the color of the gas flame was blue and carbon monoxide was negligible, except when the opening area was very small. The experiment was carried out in a laboratory with a dimension of 15 m × 15 m × 4 m (in height).

The “Cabin” had one opening or two openings. Opening (1), on the left wall in Fig. 3, was a doorway type vent, the lower sill of which was flush with the floor, with a height H and a width W. Opening (2), on the right wall, was a window type vent, the upper sill of which was flush with the ceiling. Opening (1) and opening (2) had the same dimensions. The ventilation of the “Cabin” with either of these two openings, or with both openings was measured using a hot-wire anemometer and thermocouples. The air mass flow rate (m_{air}) in this study was the steady state inward cool air (almost 30°C in temperature) flow rate, which was almost same as the outward hot air (almost 100°C ~ 250°C) flow rate since the natural gas flow rate of the burner was less than 1% of the outward hot gas flow.

3. Experimental Results and Considerations

(1) Air Mass Flow Rate of a 1-Opening Cabin

The ventilation of a “Cabin” with one vent of either opening (1) or opening (2) on the end wall as shown in Fig. 3 was investigated as a function of the opening geometry. A heat source with a dimension of 0.18 m by 0.18 m was located in the center of the floor (burner (B) in Fig. 3). The heat source strength was kept constant at $Q = 13$ kW, except in the case of a comparatively small vent — then a yellow flame was mixed in with the usual blue flame. Figure 4 shows the air mass flow rate at the opening as a function of ventilation factor defined by $W H^{3/2}$. This figure indicates that the air mass flow rate is not always the same even when the ventilation factor is the same, since curves (1) and (2) correspond to the ventilations of a window type vent and a doorway type vent respectively. In both curves, the opening width is fixed at $W = 0.8$ m and the height varies. Curves (3), (4) and (5) are obtained when the opening height is kept constant at $H = 0.8$ m, 0.6 m and 0.4 m respectively, while the opening width varies. In addition, the mass flow rate at the opening is not always linearly proportional to the ventilation factor at this energy level of heat source. Thomas et al.⁵ gave straight lines (A) and (B), as shown in Fig. 4, for a small opening and for a large opening respectively, based on the following equation (1).

$$m_{air} = 2/3 C_d \rho_0 \sqrt{2g f(\rho_w)} W H^{3/2}$$

(1)
where \(C_d \) : orifice coefficient (usually \(C_d \approx 0.7 \))
\(g \) : gravitational acceleration
\(\rho_0 \) : ambient air density
\(\rho_g \) : hot gas density
\(f(\rho_g) \) : function of gas density (This function is taken to be constant in the case of the line (A) in Fig. 4).

Contrary to this, Harmathy\(^6\) proposed the following equation as a function of gas density.

\[
f(\rho_g) = \chi^{1/2} \left(1 - \frac{\rho_g}{\rho_0} \right)^{1/2} \left(1 + \frac{C_0}{C_g} \right)^{2/3} \left(\frac{\rho_0}{\rho_g} \right)^{1/3} \left(1 + \frac{R}{m_{\text{fuel}}} \right)^{2/3} \quad \ldots \ldots \ (2)
\]

where \(\chi \) : factor expressing the effect of fire plume
\(C_0 \) : flow coefficient for the cool air stream
\(C_g \) : flow coefficient for the stream of fire gases
\(R \) : Mass loss rate of fuel

According to this, the relationship between the air mass flow rate and ventilation parameter does not show a linearity. Especially, the air mass flow rate for comparatively small openings becomes much bigger compared with those of Thomas et al.\(^5\), i.e., almost twice of the latter.
He also reported that the ventilation is not affected by the location and geometry of an opening when the ventilation parameter of the opening is kept constant, while Rockett\(^7\) suggested that the ventilation is a function of the location of an opening, similar to the present study. It is considered that the discrepancy between these is caused by the fire source dimension. Harmathy\(^6\) used a fully developed fire source on the whole floor, while the present study and Rockett\(^7\) used a small fire source partly spread on the floor. Therefore, it is considered that the ventilation is a function of the location and geometry of an opening when a fire is not fully developed.

Another relationship between the air mass flow rate and the ventilation parameter is the following equation used by Quintiere et al.\(^8\)

\[
m_{air} = \frac{2}{3} C_d \rho_0 \sqrt{2g \left(\frac{\rho_g}{\rho_0} \right) \left(1 - \frac{\rho_g}{\rho_0} \right)^{1/2}} \frac{W}{(H - N)^{3/2}}
\]

where \(N\): neutral plane height at the doorway

This relationship is a function of fuel mass loss rate, i.e., heat source strength in the enclosure, but it is always less than the line (A) of Thomas et al.\(^5\), differently from the results of Harmathy\(^6\) mentioned above, as shown in curve (C) in Fig. 4. Consequently, in the zone model analysis, the orifice coefficient of the doorway has a big role and may be a function of the vent area and the gas temperature, while in the field model analysis the orifice coefficient is not used.

The author et al.\(^9\) obtained numerically, based on a differential field model, a sharp change-over from a curve close to line (A), for a small vent, to another curve close to line (B), for a large vent. Takeda et al.\(^10\) reported a curve, similar to this, of a maximum fuel mass loss rate at an intermediate ventilation parameter concerning an enclosure fire. He also reported that this phenomena do not always take place, but the enclosure size and the fire source dimension play an important role for this phenomena. Therefore, it is considered that the relationship between the air mass flow rate and the ventilation parameter also depends on the compartment size, fire source dimension and fire source strength. Curves (5) to (8) in Fig. 5 show the relationship between the air mass flow rate at an opening (\(W = 0.8 \text{ m and } H = 0.3 \text{ m}\)) and the heat source strength in a cabin with one vent. (Curves (1) to (4) for a two-vent cabin will be referred later.) This indicates that the ventilation depends on the fire source strength, vent location and burner dimension. This also shows that the difference between the doorway type ventilation and the window type ventilation becomes small when the burner width becomes large. This tendency agrees with the results mentioned above, i.e., the results of a fully developed fire and a small fire. However, this occurred at the low energy level, \(Q = 5 \text{ kW to } 31 \text{ kW}\), where temperatures inside the cabin were almost \(100^\circ \text{C to } 250^\circ \text{C}\). Therefore, additional experiments for higher energy levels are needed. However, even at this low energy level, point (b) for \(Q = 31 \text{ kW}\) in Fig. 4 is far greater than curves (A) and (C) and therefore, the ventilation curve should be greater than curves (A) and (C), which agrees with the results of Harmathy\(^6\) as mentioned above.
(2) Air Mass Flow Rate of a 2-Opening Cabin

The ventilation efficiency of a cabin depends not only on the vent geometry, but also on the number of openings. Figure 6 shows the ventilation efficiency of a one-opening cabin and a two-opening cabin at a constant heat source strength $Q = 13$ kW. The opening width was kept at $W = 0.8$ m and the heat source dimension was 0.18 m by 0.18 m. The heat source was located at (A) and (B), shown in Fig. 3, for the two-opening cabin and one-opening cabin respectively. Curve (1) corresponds to a two-opening cabin and curves (2) and (3) correspond to a window type vent and to a doorway type vent respectively. Curve (4) (almost a straight line) shows the sum of curve (2) and curve (3). Curve (5) shows the ratio of curve (1) to curve (4), which indicates the ratio of ventilation efficiency of a two-opening cabin to a one-opening cabin. When the opening is relatively small, a two-vent cabin is far more effective in ventilation compared with the sum of a single window cabin and a single doorway cabin. Contrary to this, the ventilation efficiency of a two-vent cabin becomes worse as the openings become large. This can be explained as follows. When the vent height H is small, the doorway type vent and the window type vent of a two-opening cabin does not have a counter flow, which increases a flow resistance at the opening, and therefore the flow is very smooth. However, the opening height
becomes large, a counter flow occurs. The flow resistance grows large due to this counter flow at the opening.

Curves (1) to (4) in Fig. 5 shows the ventilation of a two-vent cabin as a function of heat source strength. Curves (1) and (3) correspond to the burner width $W_h = 0.36$ m and curves (2) and (4) correspond to $W_h = 0.18$ m. Curves (1) and (2) correspond to the burner location (A) and curves (3) and (4) correspond to the location (C). This indicates that the ventilation of a two-vent cabin is highly affected by the heat source dimension and the heat source location. The discrepancy between these curves are maintained even at $Q = 31$ kW and the ventilation depends on the almost 1/3 power of the heat source strength. The number of air changes (air mass flow rate/volume of the cabin) in these cases was several times per minute as shown in Fig. 5. When the burner width becomes large, the discrepancy between curves (1) and (3), or (2) and (4) will increase, as reported in the numerical study9 of air entrainment by a fire plume under a ceiling.

The air mass flow rate of a two-vent cabin as a function of the conventional opening factor $W H^{3/2}$, under a constant heat source strength $Q = 13$ kW or $Q = 31$ kW, does not indicate linearity. Contrary to this, plots of the air mass flow rate against factor $W^{3/5} H^{3/10}$ show a straight line as shown in Fig. 7. Therefore, factor $W H^{3/2}$ is not an appropriate parameter when the heat source strength in a two-vent cabin is comparatively small. In these cases, temperatures inside the cabin were almost 100°C to 200°C.

(3) Air Mass Flow Rate of an Inclined Cabin

The body of a “Cabin” with two openings inclines from the horizontal ground at angle θ. This corresponds to an aircraft which has crashed “nose or tail first” into a field. It is well-known that the burning rate of fuel on a rising slope is extremely large compared with that on flat ground. Figure 8 shows the air mass flow rate as a function of the angle of an aircraft body.
to the horizontal ground at a constant heat source strength $Q = 13$ kW. The opening width was kept constant at $W = 0.8$ m. The burner dimension was 0.18 m by 0.18 m. When the opening height was 0.8 m and 0.6 m, the ventilation depends linearly on the angle θ itself, rather than the sine or cosine of the angle. The ventilation increases extremely with the angle, for instance the ventilation at 23° is 2.5 times of that at 0°. When the opening height is 0.4 m and 0.2 m, the linearity of the relationship is lost. In these cases when the opening area was comparatively small, the wind velocity at the opening was large and therefore the gas flame was blown in the direction of the outlet, i.e., opening (2). This indicates that the heat source strength might not be kept constant. An electric heater may be a better heat source for this purpose. However, the linearity of the relationship should be lost at some angle θ. In addition, the linearity of the relationship may be lost when the vent size of the cabin is small.
3. **Comparison of Experimental and Numerical Results**

The gas flow field of the two-vent cabin with an opening of $H = 0.3$ m and $W = 0.8$ m was
investigated experimentally and numerically. The calculation was conducted using a three-dimensional code, based on a differential field model and refined from UNDSAFE, with the aid of a computer FACOM M-160-AD. The precise calculational procedures can be known in Reference 4, although it is based on a two-dimensional flow. The computational grid system consists of 36 \((L_0) \times 8 \,(W_0) \times 8 \,(H_0)\) cells. All walls were assumed to be isolated and radiation was neglected. The heat source strength was 13 kW, which was uniform in the cells of 0.2 m \(\times\) 0.2 m \(\times\) 0.1 m, although the gas burner in the experiment was 0.18 m \(\times\) 0.18 m. The heat source was located at (A) shown in Fig. 3. The opening dimension was 0.8 m \((W)\) by 0.3 m \((H)\). Figure 9 shows temperatures, at heights 0.7 m and 0.4 m above the floor as a function of distance in the direction of length \(L_0\). Both curves are not far from each other, although at both ends of the cabin they differ. The temperature of the outward gas in the experiment was higher than the numerical one. The velocity distribution at opening (1), inward flow, was almost uniform in the experiment, but the numerical velocity distribution at opening (1) had a gradient as shown in Fig. 10. At opening (2), outward flow, the air velocity distribution had a gradient both in the experiment and the calculation, and those values are almost same. The air mass flow rate at opening (1) in the experiment was 0.19 kg/sec and the numerical one was 0.23 kg/sec. This is because the average air velocity at opening (1) in the experiment was smaller than the numerical one. The air mass flow rate for the two-dimensional calculation should differ from the three-dimensional one because the heat source strength per unit volume for the two-dimensional one is smaller than the three dimensional one and opening width has a considerable effect in ventilation when the fire is not fully developed. The energy loss from the wooden walls in the experiment was estimated 28% since the outward heat flow was almost 72% of the input heat source strength, while in the calculation all walls were assumed to be isolated.

4. Conclusions

When the heat source strength is comparatively small, the ventilation of a cabin, is not always a linear function of factor \(WH^{3/2}\). In addition, the ventilation of a one-vent cabin is not always the same when the heat source strength is comparatively small and the fire is not fully developed, even if factor \(WH^{3/2}\) is same. The ventilation of two-vent cabin depends on factor \(W^{3/5}H^{3/10}\), rather than \(WH^{3/2}\), when the heat release rate of fire is comparatively small. When the opening is small, the ventilation of two-opening cabin is far more effective compared with the sum of the ventilation of one-window-opening cabin and one-doorway-opening cabinet, but
for a large vent this trend is reversed because of the increase of the flow resistance of two vent
cabin due to counter flow. The location and width of the heat source highly affected the venti-
lation, especially in the case of a two-opening cabin. The width of the opening also affects the
ventilation. Therefore, the two dimensional numerical results should differ from the three
dimensional ones when the fire is not fully developed. The ventilation in an inclined cabin with
two vents was linearly proportional to the angle of the body to the horizontal ground. The out-
ward gas temperatures in the calculation were lower compared with the experimental ones in
the case of two-vent cabin, although all walls were isolated in the calculation and heat loss from
walls was 28% (estimated) in the experiment.

5. Acknowledgment
The author would like to thank Mr. Gary E. Papach for his kind English editorial service.

6. References
1) MacArthur, C.D.: “Review of the Improved Gas Dynamics Model for DACFIR. 3”, Meet-
ing on the Aircraft Cabin Fire Phenomena at University of Dayton, (September 1980)
1”, Report No. FAA-RD-78-57, (March 1978)
Cabin Fire Simulation by UNDSAFE Code”: Meeting on the Aircraft Cabin Fire
Phenomena at University of Dayton, (September 1980)
in an Enclosure with Thermal Radiation”, Technical Report of the Department of Aero-
space and Mechanical Engineering of University of Notre Dame, TR-79002-78-3, (1978)
Kinds of Behavior”, Fire Research Technical Paper No. 18, Fire Research Station, England,
(October 1967)
6) Harmathy, T.Z.: “Ventilation of Fully-Developed Compartment Fires”, Combustion and
nology, Vol. 12, 165 (1976)
9) Satoh, K., Yang, K.T. and Lloyd, J.R.: “Ventilation and Smoke Layer Thickness through a
Doorway of a Cubic Enclosure with a Central Volumetric Heat Source”;, Chemical and
Physical Processes in Combustion, Proceedings of the 1980 Meeting of the Eastern Section
of the Combustion Institute, Princeton, Paper No. 20 (1980)
10) Takeda, H., Nakaya, I. and Akita, K.: “Experimental Study of Small Enclosure Fire with
Liquid Fuel”;, Bulletin of Japanese Association of Fire Science and Engineering, Vol. 28,
No. 2, 19 (1978)
Research Institute of Japan, No. 52, 62 (1981)
消防研究所報告

通巻 53 号

昭和57年3月31日発行

発行 自治省 消防庁 消防研究所

東京都三鷹市中原3丁目14番1号
電話（0422）44-8331（代表）