目次

研究

音声による避難誘導についての研究………………………………渡部 勇市……（1）
木材クリアの燃焼速度………………………………………山鹿 修蔵・栗本 裕司……（8）
小容器による液面燃焼の燃焼速度におよぼす液内流動の影響………湯本 太郎……（16）
酸素発生式呼吸器の開発研究（1）
- 超酸化カリウムの酸素発生等反応特性について…………………高橋 哲……（33）
酸素発生式呼吸器の開発研究（2）
- 避難救命酸素呼吸器の開発と性能……………………………高橋 哲……（49）
- 煙および燃焼分解ガス中に含まれる刺激性成分について（英文）……守川 時生……（62）

消防研究所

東京都三鷹市
REPORT OF FIRE RESEARCH INSTITUTE OF JAPAN

Serial No.41 March 1976

— Contents —

MEMOIR

A Study on Voice Guidance for Evacuation

........................ Yuichi Watanabe(1)

Burning Rate of Wood Crib —Shuzo Yamashika and Hiroshi Kurimoto(8)

The Effect of the Convective Motion in the Liquid on the Liquid
Burning Rate .. Taro Yumoto(16)

Development of an Oxygen-Generating Breathing Apparatus
—I. The Reactive Characteristics of Potassium Superoxide
Mainly with Exhaled Breath —

..........................Satoshi Takahashi(33)

Development of an Oxygen-Generating Breathing Apparatus
—II. Design and Performance—..........................Satoshi Takahashi(49)

Evolution of Irritant Materials from Smoldering Combustion

..........................Tokio Morikawa(62)

Published by
Fire Research Institute of Japan.
14-1, Nakahara 3-chome, Mitaka, Tokyo, Japan.
音声による避難誘導についての研究

渡部 勇市

（昭和50年9月17日受理）

1. まえがき

人間は主として視覚によって避難路を判断し、安全な場所へ避難することが多い。そのため、ビル、地下街には誘導帯等が設置されている。しかし緊急時には誘導帯は見落とされがちであり、また、火災による煙で視界がきかなくなる事も多い。このため視覚による避難誘導は大変困難になっており、逃げ遅れる危険性も大きい。

したがって、ビル、地下街ではむしろ音声によって避難誘導するのが望ましいとする意見も多く、最近では従業員等による誘導が避難誘導計画の中に組込まれている。このような誘導法音声によって避難者に情報を与え、速やかに避難方向を判断させる方法であり、緊急時には比較的有効であると考えられる。

人間の音に対する方向感覚については、これまで数多くの研究が行われており、音源の方向は相当な精度で知覚出来る事が分っている。本実験では、この方向感覚を利用して音声誘導法がどの程度効用であるかを実験実施により検討したものである。なお、実験では視界がきかない時を想定し、歩行者に目障をさせ、音声に従い出発点から音源までの歩行が可能であるか、どうかを音声、障害物の条件を変えて行った。

2. 実験方法

実験場は30m×15mの広さの体育館を使用し、出発点から音源まで約30mを単独で目隠しの状態で歩行する。歩行者の出発点および音源は各歩行毎に位置を変えた。

誘導音声は歩行者を見ながらトランジスターメガホンで「右へ行きなさい」又は「左へ行きなさい」というように歩行者の状況に合わせて具体的に指示をする人間の音声による方法と録音テープにあらかじめ5秒おきに「非常口はこちらです」と録音しており、トランジスターメガホンから複数に機械的にこの音を流す録音テープによる方法の2種類とした。音量はトランジスターメガホンから1m離れた所で70dBとした。

歩行実験は消防隊員16名の協力を得て行なわれ、歩行者の平均年齢は26才であった。各歩行者は消防作業衣を着用し、かつて目隠しをした。

実験時は歩行者の行動は広角カメラ（焦点距離F = 20mm）で5秒おきに撮影し、歩行経路、速度を測定した。又実験時の歩行者の不安感を測定する為に医師テレメータ用いて脈搏数も同時間に測定した。
それぞれ条件の異なる下記の4種類の実験を行った。
(1) 直進歩行実験
音声無しの状態で体育館側端から中央に向けて目隠して直進し、どのように直進を行うかを調べた。歩行者は出発点からあらかじめ直進方向に体を向けた歩行した。
(2) 障害物が無い時の誘導歩行実験
体育館に障害物を置かないで音声による誘導歩行実験を行った。歩行者は出発点でその歩行方向が分らないように、目隠しの状態で3回、自ら回って歩行を開始した。又騒音に対する影響を調べる為に体育館の壁面にトランジスターラジオを10m置きに6台置き、体育館中央で約60dBの音量となるよう設定した。
(3) 定置障害物の場合は誘導歩行実験
体育館に木の棒で作った障えおよび実行4.2m、高さ0.75mの障害物を6個格子状に置き、音声による誘
3. 実験結果と考察

3.1 直進歩行実験

Fig. 1 は歩行者が出発点から、目隠しの状態で体育館中央を直進しようとした時の歩行経路図である。この図からわかるとおり、歩行者は直進方向から左右に最大15度程度偏って步行している。この実験のよう
に歩行者に情報を与えなかった時、つまり歩行者が視覚、聴覚、触覚等によらないで、自分の勘だけで歩行する時には最大15度程度違った方向に進んでしまう。したがって、視界がきず、広々とした所では自分の
思った通りに進む事ができない。なお、この時の平均歩行速度は約1.56m/sであった。

3.2 障害物を置かない時の誘導歩行実験

人間の声による誘導歩行実験の歩行経路図をFig. 2 に、また録音テープによる誘導歩行実験の歩行経路図

Fig. 1 Walking courses in the case when persons, blindfolded, were going to walk straightly.
○ Start point
● Every point indicates position of walker at intervals of five seconds

Fig. 2 a–b Walking courses in the case when persons, blindfolded, were guided by a human voice given through a loudspeaker.
○ Start point
○ Loudspeaker
● Every point indicates position of walker at intervals of five seconds

をFig. 3 にそれぞれ示す。どちらの音声でも音源まで歩行する事ができることがわかる。この時の平均歩行速度は人間の声による誘導の場合約1.29m／s、録音テ
ープによる誘導の場合約1.06m／sであった。

人間の声による誘導の場合は音の方向感覚の他に頭
脳で音の言語を理解しながら進む事になるので歩行者は人間の声が聞こえ、その内容を理解するためにその歩速は少し遅くなり、聞き終えると早くて歩行し始めるようになる。又歩行者の中には「右へ行きなさい」と声を出すとその指示する方向が自己の進行方向に対するものなのか、誘導者の発声方向に対するものなのかを判断できなかった者が2〜3人もいた。人間の声による誘導よりも録音テープの繰返し音声による誘導により歩行者はずっとスムーズに音源まで歩行できた。

実験中壁にぶつかった歩行者が2人いるが、これは壁からの反射音が又はあわれたために方向感覚を誤ってしまったと思われる。しかし、最終的には音源まで到達している。

騒音として壁面に約10m置きにトランススターラジオを6台設置、それぞれ別のラジオ番組を鳴らした為に、それぞれの方向からラジオ音が聞こえた。歩行者にとってはそれらの音は騒音としてよりはむしろ自分の位置を知るのに役立つもった。しかし、音量の大きい騒音の場合には誘導音を聞き難くしてしまう。

Fig. 3 a-b Walking courses in the case when persons, blindfolded, were guided by tape-recorded voice.
○Start point
△Loudspeaker
●Every point indicates position of walker at intervals of five seconds

3.3 定置障害物の場合の誘導歩行実験
人間の声による誘導歩行実験の歩行経路図をFig. 4に、また録音テープによる誘導歩行実験の歩行経路図をFig. 5にそれぞれ示す。障害物を置かない時と同様にどちらの音声でも音源まで音源まで歩行する事ができる。この時の平均歩行速度はどちらの音声でも約0.59m/秒であり、障害物を置かない時に比べて約25%遅くなっていく。

歩行経路の特徴として、壁ぎわに騒音を出すトランススターラジオを置いたためか館内の中央を通る歩行者は少なく、壁ぎわを通る歩行者が多かった。

歩行者は障害物が置いてある為に手を前に伸ばしながら触覚で障害物の形状を認知し、安全を確認しながら歩行した。

この時の歩行中の脈搏数は人間の声による誘導の場合、平均105/分、録音テープによる誘導の場合、平均111/分であった。多少人間の声による方が安心感があるように思われる。
3.4 Walking courses in the case when persons, blindfolded, were guided by a human voice given through a loudspeaker. There were orderly obstacles in the gymnasium.

Fig. 4 Walking courses in the case when persons, blindfolded, were guided by a human voice given through a loudspeaker. There were orderly obstacles in the gymnasium. (noise 60dB)
○ Start point
△ Loudspeaker
● Every point indicates position of walker at intervals of five seconds

Fig. 5 Walking courses in the case when persons, blindfolded, were guided by tape-recorded voice. There were orderly obstacles in the gymnasium. (noise 60dB)
○ Start point
△ Loudspeaker
● Every point indicates position of walker at intervals of five seconds

Fig. 6 a-c Walking courses in the case when persons, blindfolded, were guided by a human voice given through a loudspeaker. There were scattered obstacles in the gymnasium. (noiseless)
○ Start point
△ Loudspeaker
● Every point indicates position of walker at intervals of five seconds
も音源まで歩行する事が出来る。この時の平均歩行速度は人間の声による誘導の場合は約0.76m/s、録音テープによる誘導の場合約0.67m/sであった。障害物の配置状態を知らせないで歩行実験を行ったにもかかわらず、定置障害物の時と比較して歩行速度が速くなっていたが、これは障害物の占める面積が小さく、通路面積が大きかった為と思われる。
この時の歩行中の中振動数は人間の声による誘導の場合、約113/分、録音テープによる誘導の場合、約119/分であった。定置障害物の時と同じようにいくらかは人間の声の方が安心感があるようにと思われる。

Fig. 7 a–c Walking courses in the case when persons, blindfolded, were guided by tape-recorded voice.
There were scattered obstacles in the gymnasium. (noiseless)
☆Start point
△Loudspeaker
●Every point indicates position of walker at intervals of five seconds

4. 結 論

人間の音に対する方向感覚を利用した避難誘導法の実際の有効性を調べるため、視界のきかない状態で歩行実験を行い、歩行経路、歩行速度、振動数などを測定し、次に実験の大きかった。(3) 障害物が有る場合には手による触覚で障害物の形状を認知し、安全を確めながら歩行する。視界がきかない時には音声の他、手による触覚は重要な役割を果す。

終りに本研究について御指導いただいた名古屋大学田部部長および実験に協力して下さった佐藤晃由技官に感謝の意を表します。又歩行実験ならびに測定作業に多大の御援助をいただいた三木市消防本部の方々に心から御礼を申し上げます。
引用文献

1) 電子通信学会編：聴覚と音声 p.131〜138 コロナ社（1969）
2) 勝本保夫：生理学大系VI 感覚の生理学 p.819〜828 医学書院（1967）
A Study on Voice Guidance for Evacuation

(Abstract)

Yuichi Watanabe

(Received September 17, 1975)

In a fire where visibility is obstructed by smoke, it is often said that it may be possible to evacuate safely from the scene with distinguishing ability of the directional sense of human ears for a source of sound. Therefore, this study was intended by the author to investigate about the actual validity of a few methods of voice guidance for evacuation.

Experiments were carried out in a gymnasium of 15m x 30m., and persons, blindfolded, were guided by voice to walk for about 30m from the starting point to the source of sound. Two kinds of voices as follows: a human voice given through a loudspeaker and tape-recorded voice reiterating “Exit here” mechanically, in the experiments were used.

The following results were obtained from the experiments.

(1) It is possible to guide a person according to the directional sense of his ears even when his visibility is obstructed. Voice gives a person not only instructions but a definite direction of the sound, and is, therefore, effective to guidance for his evacuation.

(2) Guidance with human voice resulted in less smoothness of walking than with the reproduced tape-record indication, but was more effective owing to assuring confidence in human mind. The walking speed was not so much different in both cases.

(3) When a blind person encounters an obstruction on walking, he grasps the shape of the obstruction through the sense of touch or by hands to insure his safety and proceeds. Where the visibility is obstructed, the sense of touch of hand as well as voice play an important role.
木材クリブの燃焼速度

山鹿修蔵, 栗本裕司

(昭和50年11月22日受理)

1. まえがき

木材クリブの火災は、木材の火災の基本的な燃焼形態のモデルとして広く使用されている。木材クリブの燃焼速度はGrossによって詳しく測定され、さらにそのデータや他のデータを合せて、SmithとThomasによって解析が加えられている。

たまたま筆者らは、消火器の消火能力単位を測定する方法を再検討する際に、A火災の火災模型として用いられているこれらクリブの火災について、彼らのデータを利用できと考えていたが、実用に際していくつかの食違いのある点を見いただした。そこで再び木材クリブの燃焼速度について詳しく測定をやり直し、検討を加えることとした。その結果、その食違いは木材の材質の相違にもよるが、筆者らはその他に二、三の新しい要素を導入することにより、これまでよりは一層正確な実験式を示すことができたので、以下に述べることにする。

2. 実験方法

実験に用いた木材の材質は、日本産の杉、檜および赤松とウラオの4種である。これらの木材を辺長13、18、25、35、50、70、および100mm角で、長さ13、18、25、35、および50cmの木材とし、これを1段に3～12本並べ、5～20段積んで井桁状に組み、原則としてほぼ立方体になるようにしてクリブ模型とした。その他に、この立方体を縦または横に複数個並べてクリブが細長くなった場合についても調べた。

クリブの予備はクリブの辺の長さと同じ大きさの鉄製の燃焼皿中に、予備時間が10分間になるよう量のガソリンをいれて点火して行い、そのあとは自由燃焼にまかせて火災模型とした。

クリブの枠組の下に、4個の荷重変換器を置いて、燃焼に伴なうクリブの重量変化を測定した。また、クリブの辺の10倍の距離に、クリブの前面と側面に放射計を置いて同様に放射受熱量を自動記録して、燃焼状況の把握に努めた。このほか同じ距離から写真を撮り、燃焼状況を記録した。実験装置とクリブの位置関係はおおよそFig.1のようである。

なお、実験結果を示すに当たり、すべての実験番号は、木材の大きさ（単位cm）——試験数——木材の間隔を示す指数（$2 \log_2(d/b)+2$）の順に一連番号で示されている。また、経過時間については、特に断わりのない限り、重量減50％の場合のデータを用いている。

Fig.1. Schematic view of experimental apparatus. 1 wood crib, 2 strain gauge for weigh, 3 oil pan, 4 radiometer, 5 camera
3. 結果と考察

3.1 実験の結果

1個のクリプが燃焼する際の重量と放射量の記録は、おおむねFig. 2 のようになった。各実験におけるこのような記録から、各時刻（重量減少率）における燃焼速度や放射量を読み取り、解析することができる。

Fig. 2. Example of chart for weight loss and radiation. Numbers on the curves represent stick width in mm, number of layers, and index of space, respectively.

燃焼速度は初めややおそく、やがてほぼ一定になる時期がある。この時期はクリップの初重量の約2倍から3倍の間であり、値以下になると木質部がなくなってクリップが崩れてしまった。しかしクリップの組み方によって、密であったり密過ぎる場合には下の部分から先に燃えて崩れてしまい、クリップ全体が均一に燃えている時間がなかった。逆に疎であったり密過ぎる場合にはクリップ全体の燃え方が一緒でなく、バラバラに木片が燃えているようにあって炎勢が弱くなった。

火勢が弱くなってからの放射受熱量は、"おき"の蓄積とともに少しずつ増加している傾向が認められた。後述するように木材クリップそのものの燃焼速度は、時間の経過とともに少しずつ減少し、したがって発熱速度も減少すると考えられるので、この放射受熱量の増加は、おきによる輻射能の増加と推定される。重量減少が初めの重量の50%の時の周辺の放射受熱量は、木材の発熱量を3600cal／gとして発熱量の18.6±3.1%であった。

燃焼速度が大となりほぼ一定の定常燃焼状態であると見なせる部分について、さらに詳しく観察すると、燃焼速度が時間とともに少しずつ減少しているのが認められた。これは燃焼に伴ない木材が細くなるために、熱分解により減量している表面積が減少するためと考えられるが、表面積の減少量だけで考えるほど燃焼速度の減少は見られないの、後述する木質の減少による燃焼速度の増加も加味して考えねばならない。

木材の材質が異なれば、密度、熱伝導率、比熱などが異なるので、燃焼速度に影響を与えることが予想される。Fig. 3 には、この実験で用いた各種の木材についての結果を示す。材質の違いによりいくらかの差があるようであるが、全体としての結果を左右するほどの差はない。したがって、これについての詳しい解析が必要ならば別の方法で試験の移動を詳しく捕える測定をする必要があるよう。

Fig. 3. Effect of materials and dimensionless space among sticks on burning rate.
○ Japanese cedar, △ Japanese cypress, △ red pine, X red lauan.

3.2 木片の太さ

Fig. 4. Influence of space among sticks on burning rate (Exp. No. 25-20-1~8).
同じ太さの木片から構成されているクリブについて、組み方を変えて木片の間隔を変化させると、Fig. 4のような結果が得られる。燃焼速度はその重さ（すなわち構成木片数）に比例していることが分る。

クリブの初めの重量（気乾状態のままで、含水したままの重量）の1/2になった時の燃焼速度をFig. 5に示す。木片の初めの太さにより単位表面積当りの燃焼速度に差のあることが認められる。

Fig. 5に示した燃焼速度をクリブの初めの重量で除した値、すなわち$R = v / W_o$を太さごとに平均をとって太さと比べてみると、Fig. 6のようにになった。この図の値は実験したもの全部の平均値であるので、燃焼速度が最大となる条件のものではないが、燃焼速度に対する太さの影響を見るにかまえて十分な量と考と考えられる。

この直線の勾配は、−1.6であるので

$$ R \sim b_o^{-1.6} $$

で表わすことができる。この結果は、Grossの出した$R \sim b_o^{-1.6}$という式と全く一致したことになる。したがって初めに述べた筆者らのデータと、Grossの式によって求めた燃焼速度との食い違いは、比例定数の値の違いによる可能性が大きいことになる。

Fig. 6. Relation between the stick width and the burning rate.

3.3 時間の経過

木材は時間の経過とともに細くなって行くので燃焼表面積が減少するためである。Fig. 2に示した重量変化のわずかな勾配の変化、すなわち燃焼速度の変化と重量の残留率$(1 - Z)$との間の関係を図示すると、

Fig. 7. Variation of burning rate expressed in terms of dimensionless remained Weight (Exp. No. 25-20-4).
Fig. 7 が得られる。Z が小さい間は完全な定常状態ではなく、また、Z が大きい部分はクリプが崩れ出すのでやはり計測が困難である。1 - Z が 0.3 から 0.7 の範囲について求めた勾配 0.5 から

\[v \propto (1 - Z)^{0.5} \] \hspace{1cm} (2)

の関係が得られる。

(1) 式において、木材の重量を表面積に換算するために木材の木口の面積を無視すると(3)式の関係が得られるから、(1)式と(3)式から(4)式が得られる。

\[W_s = \frac{\pi N b_0^2 l}{4} \]
\[v \propto \frac{W_s}{b_0^{1.6}} \]
\[\propto A_s/b_0^{0.6} \] \hspace{1cm} (3)

(4) 式において(2)式と(4)式から(5)式が得られる。

\[v \propto b_0^{0.6} A_s (1 - Z)^{0.5} \]
\[\propto b_0^{0.6} A_s (W/W_s)^{0.5} \]
\[\propto b_0^{0.6} A_s (b/b_0) \]
\[\propto b_0^{0.6} A' \]

すなわち燃焼速度は仮定表面積 A' に比例することになる。仮定表面積は“おき”の存在を無視しておきの重量を同重量の木材に換算して木材の太さに加えたことになるが、おきの密度は木材に比べて小さいので、このようなことをしても実際の木材の表面積と仮定表面積との間に数％の差があるに過ぎない。これは前の試算よりも明らかで、実際の表面積当りの燃焼速度をとらえずに仮定表面積 A' = A_s (1 - Z)^{0.5} で考えて行けば十分である。

Fig. 8 からも明らかのように、(1 - Z) は

\[W_s = \rho b_0^2 l \]
\[W = \rho b^2 l + \rho_c (b_e^2 - b^2) l \]
\[1 - Z = W/W_s \]
\[= \left(\frac{b}{b_0} \right)^2 \left(1 + \frac{\rho_c}{\rho} \left\{ \left(\frac{b_e}{b} \right)^2 - 1 \right\} \right) \] \hspace{1cm} (6)

で表わされる。一方おきは、木材の熱分解により発生する成分の実験式が、CH_2O 保持 31,32 ことから考えて、木材中の主成分セルロースを中心にして考えると、(9)式中の右辺の第 1 項の C に相当することになるので、

\[\mathrm{C}_6\mathrm{H}_{12}\mathrm{O}_6 \rightarrow \mathrm{C} + 5\mathrm{CH}_2\mathrm{O} \]
\[\rho_c (b_e^2 - b^2) = \rho_c (b_e^2 - b^2) \]
\[\mathrm{C}_6\mathrm{H}_{12}\mathrm{O}_6 \]
\[\therefore \frac{\rho_c}{\rho} \left(\left(\frac{b_e}{b} \right)^2 - 1 \right) = \frac{12}{162} \left(\left(\frac{b_e}{b} \right)^2 - 1 \right) \]

したがって

\[1 - Z = \left(\frac{b}{b_0} \right)^2 \left[1 + \frac{12}{162} \left(\left(\frac{b_e}{b} \right)^2 - 1 \right) \right] \]
\[= \left(\frac{b}{b_0} \right)^2 \left(1 + \frac{12}{162} \right) \]
\[= 1 - \frac{1}{1 - 150} Z \]
\[= 1 - 0.04 Z + 0.00424 Z^2 \]
\[+ 0.005726 Z^4 + \ldots \ldots \ldots \ldots \]

となる。以上の結果から見ても、Z = 0.5 において、約 4 %の誤差に過ぎないことは明らかである。

3. 4 ポロシティーと底面積

木材の燃焼には空気が必要である。空気の流量は当然クリプの組み方や底面の空間部の面積の影響を受けるであろう。このことは Fig. 3 より Fig. 4 において中高にデータが並んでいたことからもうなづけよう。ここでは行われた実験について木片相互の間隔が変わるとどのように変わるかを検討して行く。

クリプ内部の気流の速度は、内外の密度差で定まるとするが、(5)式が成り立つ。
\[
\begin{align*}
U &= \sqrt{2 \gamma k \frac{\rho_0 - \rho_1}{\rho_0}} \\
\rho_0 - \rho_1 &= \left(\frac{1}{T_0} - \frac{1}{T} \right) \\
&= \frac{T - T_0}{T} \\
V_s &= \frac{S T_0}{T} \sqrt{2 \gamma k \frac{T - T_0}{T}}
\end{align*}
\]

これにクリップの底面の空隙の面積を乗じると全流量になる。全流量を常温に換算し、また密度比を温度比に直すために(10)式を用いると(11)式が得られる。

木炭からの分解ガスを完全に燃焼するに必要な空気量は、分解ガスの平均実験式がCH₂Oであることから、(14)式から3800cm³と計算される。

\[
\begin{align*}
\text{CH}_2\text{O} + \text{O}_2 &\rightarrow \text{CO}_2 + \text{H}_2\text{O}
\end{align*}
\]

したがってV_sの空気により1度燃焼する木炭分解ガスの量V_sは

\[
V_s = \frac{V_s}{3800}
\]

と考えることができる。

さて

\[
v_g = k \times \frac{W_s}{b_0^{1.6}}
\]

とおき、実験結果v_gについて

\[
F = v / v_g
\]

\[
F = \frac{v}{v_g}
\]

とおく。(12)および(13)式から求めたF_aおよびFの値を両対数グラフにプロットすると、F_aとFとの関係はFig. 9に示すように放物線形になる。そこでこの曲線の頂点はF_a = 1, F = 1になるようにkおよびTの値を求める。計算の結果、kは8.43×10⁻⁶cm⁻¹/s, Tは869Kとなった。またFig. 9の曲線の式は

\[
\log F = -0.487 \log F_a
\]

で表すことができた。
以上の結果から

\[F_{ia} = 10^{-4} \times x \times \log F_d / 2 \]

とおり、理論燃焼速度を求める実験式は

\[u_{ia} = u_x \times F_{ia} \]

\[v_g = 8.43 \times 10^{-3} \times W_o / b_{n}^{1.6} \]

diagram: Fig.10

表すことができる。このようにして求めた\(u_{ia} \)と\(v_g \)との誤差は1.017±0.190であった。また、ここで用いた木材の乾燥状態での密度は0.40g/mm³であったから図式を\(A_s \)で表わすと

\[v_g = 8.43 \times 10^{-4} \times A_s / b_{n}^{0.6} \]

が得られる。

なお、この比例定数はいずれも重量減50％の時の値であるから、図式、節線式を(4)式にいれると、最終的に

\[u_{ia} = 1.19 \times 10^{-2} \times W_o \times (1-Z)^{0.5} / b_{n}^{1.6} \]

\[v_g = 1.19 \times 10^{-3} \times A_s \times (1-Z)^{0.5} / b_{n}^{0.6} \]

が得られる。

3.5 クリブの高さと巾による変化

同じ底面積とポロディティーを持ち、高さが異なったクリブ群についての結果を Fig. 10 に示す。この場合燃焼速度が重量（すなわち高さ）に比例しないのは、3.4の結果から考えて当然である。燃焼速度が高さに比例するならば必要空気量も比例するはずであるが、実際の空気量は、(17)式、(18)式およびFig. 9 の結果から得た(10)式からも明らかのように高さの平方根に比例しない。

\[u_{ia} = 3.20 \times 10^{-3} \times S \sqrt{A} \]

したがって高さが高くなる程空気不足になって\(F_d \)の値が小さくなるので\(u_{ia} \)が高さには比例しないわけである。

計算の結果を実線で Fig.10 に同時に示した。

Fig.10 Burning rate of crib as a function of crib height.
The line represents the value of \(v_{th} \).

同一のクリブを横に並べて巾を広げた場合には、重量（すなわち巾）と底面積が比例して増加するので\(F_d \)の値は変らず、したがって燃焼速度は巾に比例するはずである。Fig.11 はクリブを横に並べた場合の実験結果と計算結果を示している。

Fig.11 Burning rate of crib as a function of crib width.
The line represents the value of \(v_{th} \).

4. 結 論

木材クリブの燃焼速度に関し、実用に供しうる実験式を得ることができた。すなわち、燃焼速度は、

1）クリブの総重量（または全表面積）に比例する。
2）高さの函数である。
3）経過時間の函数である。
4）空気流量の函数である。

なお、比例定数に関しては重量減50％の点において、8.43×10⁻³（または1.19×10⁻²×(1-Z)⁻³）であって、Grossらの値を上回った。また、筆者らが前に行った世界各国の消火器試験用模型クリブにおける値²⁰ 1.5×10⁻²×(1-Z)⁻³ は小さかった。しかし、これらの値の食い違いの原因については、現在のところ未解決である。

使用 記 号 一 覧

\[A \] ：クリブの表面積（cm²）
\[A' \] ：燃焼クリブの仮定表面積（cm²）
\[A_s \] ：クリブの表面積（当初）（cm²）[=4nN₀d₁]
\[b \] ：木片の太さ（cm）
\[b' \] ：燃焼木片の仮定太さ（cm）
\(b_e \) : 本片の太さ（直径）（cm）
\(b_r \) : 木片の太さ（直径）（cm）
\(d \) : 木片の直径（cm）
\(F \) : 無次元燃焼速度（－）（＝ \(v/v_g \））
\(F_s \) : 無次元空気流量（－）（＝ \(v_0/v_g \））
\(F_{\text{出}} \) : 空気流量倍戻り算定補正係数（－）
\(h \) : クリプの高さ（cm）
\(J \) : 放射受熱量（kcal/m²h）
\(k \) : 比例常数（cm³/s）
\(l \) : 木片の長さ（cm）
\(N \) : クリプの段数（－）
\(n \) : クリプ1段を構成する木片の数（－）
\(R \) : 燃焼速度（－）（＝ \(v/W_e \））
\(\rho \) : 木材の密度（g/cm³）
\(\rho_e \) : 空気の密度（常温）（g/cm³）
\(\rho_r \) : おきの密度（g/cm³）
\(\rho_i \) : クリプ内気流の密度（g/cm³）
\(S \) : クリプ内気流の流入口の面積（cm²）（＝ \(\pi d^2 \））
\(T \) : クリプ内気流の温度（°C）
\(T_e \) : 温度（常温）（°C）
\(t \) : 時間（s）
\(u_0 \) : クリプ内気流の流速（常温）（cm/s）
\(u_i \) : クリプ内気流の流速（cm/s）
\(V_0 \) : クリプ内気流の流量（cm³/s）
\(v \) : 燃焼速度（g/s）
\(v_e \) : 流入空気流量から見た燃焼速度（g/s）
\(v_g \) : 木片の太さから見た燃焼速度（g/s）
\(v_{\text{Calc}} \) : 理論燃焼速度（g/s）
\(W \) : クリプの重量（kg）
\(W_e \) : クリプの重量（当初）（kg）（＝ \(nN\rho b_e^2 l \））
\(Z \) : 重量減少率（－）（＝ \(1 - (W/W_e) \））

引用文献

4) Robert, A. P.: *Comb. & Flame*, **8**, 345 (1964)
5) 山鹿修蔵，栗本裕司：日本火災学会昭和50年度研究発表会講演。印刷物としては未発表。
Burning Rate of Wood Crib

(Abstract)

S. Yamashika, H. Kurimoto

(Received November 22, 1975)

Burning rate of wood crib was measured in connection with a crib weight, width of stick, lapse of time, and crib porosity. The rate was directly proportional to the weight or the surface area of the crib in the same width of stick as expected. The influence of width of stick on the rate was the same as that of Gross's experiments. As the stick became thinner with the lapse of time, the rate was directly proportional to the square root of remaining crib weight. The rate varied with crib porosity which has influence on inflow rate of air into the crib fires. Then the empirical equation modified for the air inflow was suggested by the authors.
小容器による液面燃焼の燃焼速度におよぼす
液内流動の影響

湯本 太郎
（昭和50年11月25日受理）

1. 緒 言

Blinovらは円形容器中でトランス油などを燃焼させ、液面下の水平方向の温度分布を測定し、使用した燃料の種類から中央に向かう傾向が見られ、温度が下がることを観察した。また塩化物は円形容器中でアルコールなどを燃焼させ、液面近傍の流動を写真法で観察し、液面にBénard形の流のできることが観察した。

これらのことは燃焼時の液体内の流が存在することを示唆している。しかし、これら液内流動が円形容器中の流体の初期燃焼速度にどのような影響を与えるかは、今でも明らかにされていない。

一方、液面の火災伝ばのさい、初めの流温が低い場合、火災前の未燃の流内にわゆる表面流が生じ、この流れが前方の流体を頑経することにより火災伝ばを助けていると解釈されている。この表面流を引き起す推進力としてBurgoyneは炎からの熱伝達によって生じる流内の密度差を、Glassmanは表面張力の温度変化を考えた。そして、Sirignano Muradら、Adler、Torranceは流動の様相および強さをMarangoni数あるいはRayleigh数を用いて整理している。

この論文では、まず液体燃料を円形容器内で燃焼させ、時間の変化とともに流面が降下していく場合の液体内の流動状態を粒子軌跡法で可視化し、つぎに写真による液面近傍のセル対流の可視化、熱電対による液内および容器壁内部温度の測定、さらに炎から液面へのふく射熱の測定を行ない、これらの結果を燃焼速度と対照することによって容器内の流体流動が燃焼速度にどのような影響を与えているかを調べた。

2. 実 験

内径26mm、厚さ2mm、高さ60mmのパイレックス製円筒に、底板としてステンレスあるいはオパールガラスを張ったものを燃焼容器として用いた。燃料は市販の1級ノルマル・ヘキサンを使った。

粒子軌跡および影写真のための光源として500Wの超高圧水銀灯を用いた。液内流動可視化のための装置の概略図をFig.1に示す。使用した回転円板は4セクター、回転数は毎秒25回転、したがって光の断続時間は0.01秒であった。トレーサー粒子は粒子径50〜74μのアルミ粉を用いた。液面近傍のセル対流は底板にオパールガラスを張った容器を使い観察し、その装置の概略図もFig.1に示した。

燃焼中の液内の温度を容器中に固定した24組の直径0.3mmの銅・コンスタンタン熱電対で、また容器壁内部温度を3組の直径0.3mmのアルメル・クロメル熱電対で測定した。熱電対、熱源および冷源に組合せたものを、容器内に設置し、炎から液面へのふく射熱を求めた。熱電対の出力と熱流束との関係は次の式で表される。

\[Q = \frac{V}{R} \]

ここで、\(Q \)は熱流束、\(V \)は電流、\(R \)は熱電対の抵抗である。
関係はあらかじめ標準炭体炉によって求めておいた。
電子式直示天秤（スイスMettler社製PE1200）の上皿に燃焼容器をのせ、燃焼による重量減少を測定した。
天秤の出力はレコーダーを介し、連続的に記録した。

3. 結果

3.1 液内対流および液面付近の流れについて

容器内でヘキサンを燃焼させた場合の液内対流および液面付近のセル対流が時間によって変って行く様子をFig. 2に示す。これらの写真は点火1分後のものであるが、液内のうすは点火とほとんど同時に生じる。生じたうすは時間とともに発達し、2分前後で最大となり、その後は時間がたつにつれて減衰していく。また液面付近のセル対流もセルの大きさ、形が時間とともに変化する。発生したうすはFig. 2から液の上部の半径が大きく、かつ速度の早いうすと、その下部の半径が小さく、かつ速度の遅いうすに大別されることがわかる。点火から2分位までは上部のうすの占める領域は時間とともに増し、その後は減っていく。それと同時に下部の速度の遅いうすの領域が増えてくる。上部領域でのうすの向きは液面近くでは容器壁から容器中心部に向かい、中心近くで下方に向き、下方領域の境で向きを壁の方へ変え、さらに壁近くで上方に向かって液面近くまで上昇する。Fig. 3に流動のパターンを示す。下部領域には谷がのうすの端や発生しているが、速度が非常に速く、エネルギーも小さい。そこで議論を進めるに際して重要なのは、うす部の上から液面までの間に存在する半径の大きいうすである。そこで、この部分の液層の厚みをこれからは有効対流厚み、\(h_e \)と呼びすることにする。有効対流厚みと時間との関係をFig. 4に、垂直方向における最大流速（\(v_{max} \）および水平方向における最大流速（\(u_{max} \）の時間によって変って行く様子をそれぞれFig. 5およびFig. 6に示す。Fig. 5およびFig. 6から各時間における\(u_{max} \)はオーダ的に(1)式で表わされる。
Fig. 2 Particle streak pictures showing convection in the liquid (a–d, interrupted time 0.01 second) and cellular convection pictures (e–h). 1 minute after ignition (a & e). 2 minutes (b & f). 3 minutes (c & g). 4 minutes (d & h).
Fig. 5 Effect of burning time on maximum vertical fluid velocity.

Fig. 6 Effect of burning time on maximum horizontal fluid velocity.

$$u_{\text{max}} = 0 \left(v_{\text{max}} \right)$$ (1)

Fig. 2 の写真から垂直方向の最大流速が現われる位置は容器中央であり、水平方向の最大流速の現われるところは液面であることは容易に理解できるが、メニスカスの存在のため写真から直接、液面における流速を読み取ることは困難である。そこでFig. 7 に示すよう

Fig. 7 Velocity profile near liquid surface (1 minute after ignition, 6.5mm from center).

に、液面近くの水平方向の速度分布曲線を液面まで外挿して得た値を水平方向の最大流速として使った。またトレーサー粒子のアルミ粉は鳞片状なので、近似的に円板、さらにReynolds数は小さいとして、速度の補正を行った。

3.2 液内温度分布および壁内温度

燃焼中の液内温度が時間によって変って行く様子をFig. 8 に示す。また燃焼中の液内等温線図をFig. 9 に示す。Fig. 9 から燃焼中の液内では垂直方向はもっとより、水平方向にも温度こう配があること、また液面の温度は壁から容器中央に向って下っているため、表面張力は最も大きくなり、その結果、壁から中心に向っての表面流が生じていることがわかる。これらのことから燃焼時の液内流動は水平方向の温度こう配が大きく作用していることがわかる。液面における最高および最低温度の時間によって変っていく様子をFig. 10 に示す。Fig. 10 には平均液面温度上昇速度（$dT/\, dt$）と時間との関係も示した。Fig. 11 には容器の壁内温度と時間との関係を示す。Fig. 11 を見ると、容器上部から 5 mm 下と 19.5 mm 下の温度変化は点火 1 - 4 分において、前者は下にへこみ、後者は上に向けて流れ、この現象は、この時期に液面では対流によって熱は壁から中心に向って流れ、下方では逆に熱は中心から壁の方へ運ばれていることを示している。
Fig. 8 Effect of burning time on temperatures in the liquid and near liquid surface. (Open circle shows 1 min. after ignition, open triangle 2 min., square 4 min., solid triangle 7 min. and solid circle 8 min.)

Fig. 9 Isotherms below and above liquid surface.

Fig. 10 Effect of burning time on rate of temperature rise, and on maximum (open circle) and minimum (solid circle) liquid surface temperature.
Fig. 11 Effect of burning time on wall temperature.

3.3 炎から液面へのふく射熱

炎から液面へのふく射熱流束は炎の大きさおよび形状に左右され、中央で最も強く、壁に近づくにつれて小さくなる。燃焼の初期にはふく射熱の場所による違いは小さいが、この容器では炎の基部は容器上縁にとどまっているため、燃焼の後期には炎の底面と液面との距離が開きすぎ、その結果、容器中央と壁近くで受けたふく射熱流束に極端な違いがでてくる。炎から液面へのふく射熱流束の分布をFig.12に、これに対応する炎の写真をFig.13に示す。Fig.14にFig.12に示すふく射熱流束を図式積分して得たふく射熱流量の時間によって変化する様子を示す。

3.4 燃焼速度とMa／Ra比

燃焼速度と時間との関係をFig.15に、Marangoni数とRayleigh数の比（Ma／Ra比）およびMa数の時間によって変化していく様子をFig.16に示す。28mm容器の場合、燃焼速度は点火と同時に急激に増加するが、すぐに減少し、3分前後に極小値をとり、それから再び増加し、最大値に達し、その後は時間とともに減少する。この燃焼速度の初期の減少は表面張力の温度変化と浮力をの比重であるMa／Ra比が減少していくことからもわかるように、液面に入り込んだ熱が対流を継続するのに使われ、さらにこの対流によって熱が液内深く運び去られるからである。また2分前後に燃焼速度に極小値があるのはMa／Ra比が最小になっていることからもわかるように、この時期に対流が最も発達し、そ
4. 考察

4.1 燃焼系の熱収支からみた蒸発に必要な伝熱仮想厚みについて

いま、(1)炎から液体への熱伝達は容器壁を介しての熱伝と炎からのふく射熱伝達による。(2)蒸発に必要な熱量は、ごく液面近の伝熱仮想厚み \(\delta \) (cm) 内の \(r \) 方向あるいは \(\theta \) 方向への対流により伝えられた熱量と、炎から液体へ入ったふく射熱のうち厚さ \(\delta \) 内に吸収された熱量によって決まわれるとするという 2 つの仮定の下に、Fig.17 に示すような燃焼系の熱収支から蒸発に必要な伝熱仮想厚みを求めることにする。なお、\(\delta \) を求める時は \(\delta \) より下方が断熱になっていると仮定する。
したがってFig.17中，T' = T - T_a。ここにTは液面温度(℃)，T_aはdより下方の周囲温度(℃)である。さらに図中，uは水平方向の流速(cm/min)，rは半径(cm)，R_bは燃焼速度(g/cm²·min)。Lは液面温度における蒸発潜熱(cal/g)，qはふく射熱流束(cal/cm²·min)，Q_vは塩酸に使われた熱流束(cal/min)である。Q_cは液面へ到達した熱流量(cal/min)，dは平均伝熱板厚み(cm)，1/s＝1/sは液面に到達したふく射熱のうち厚みd内で吸収される割合，Q_iは単位厚さでの対流による熱流量(cal/min·cm)，Q_iは厚みd以下で吸収した熱流量(cal/min)である。

Fig.17(の(a))に示すような体積要素を入射する質量流量の連続の式は(2)式で表わされる。(付録1参照)

\[\rho_r u_r \left(\frac{\Delta u}{\delta} + \frac{\Delta T}{\delta} \right) = R_b \rho_r \Delta r \] (2)

また同じ体積要素を入射する熱量のエネルギーの式は(3)式で表わされる。(付録2参照)

\[\frac{\partial T}{\partial t} = \frac{\lambda_r}{\rho_r C_r} \left(L - C_r T^* - \left(\frac{1}{I_0} \right) q \right) \] (3)

ただし \(\frac{\partial T}{\partial t} = 0 \) の場合、\(\frac{\partial T}{\partial r} = 0 \) である。

ここに，\(\rho_r \)は液体の密度(g/cm³)，C_rは液体の比熱(cal/g·℃)そして \(\rho_r \) は系の熟で，(\(\partial T / \partial r \)) \(\Delta T \)および(\(\partial u / \partial r \)) \(\Delta u \)がそれぞれ(\(\partial T / \partial r \)) \(\Delta r \)および(\(\partial u / \partial r \)) \(\Delta r \)に匹敵するような時は \(n = 2 \) である。また，(\(\partial T / \partial \delta \)) \(\Delta T \)および(\(\partial u / \partial \delta \)) \(\Delta u \)がそれぞれ(\(\partial T / \partial r \)) \(\Delta r \)および(\(\partial u / \partial r \)) \(\Delta r \)で考えると無視できるような時は \(n = 1 \) である。

厚みdの中では(\(\partial T / \partial \delta \)) \(\Delta T \)および(\(\partial u / \partial \delta \)) \(\Delta u \)はほぼ0であるので，ここではn＝1の式を使って平均伝熱板厚みdを求めることがある。

(3)式は(3')式のように書き直すことができる。

\[\rho_r C_r \delta \frac{\partial T}{\partial t} (\pi r^2) = 2 \rho_r C_r \delta \frac{\partial T}{\partial r} R_b \Delta \pi r^2 \]

\[-R_b \Delta \pi r^2 + \left(\frac{1}{I_0} \right) q \Delta \pi r^2 \] (3')

ここで，L_bは沸点における蒸発潜熱(cal/g)である。さらに(3')式は(3)式となる。

\[\int_{0}^{R} \rho_r C_r \delta \frac{\partial T}{\partial r} d(\pi r^2) = \int_{0}^{R} 2 \rho_r C_r \delta \frac{\partial T}{\partial r} R_b \pi r^2 dr

\[-R_b \Delta \pi r^2 + \left(\frac{1}{I_0} \right) q \Delta \pi r^2 \] (3')

ここに，Rは容器の半径(cm)である。

このこと，(3')式および(3')式中の\(\delta \)，u_r，T_r，qそしてR_bはすべてrの関数なので平均化を行なうと(3')式の各項はそれぞれ(4)，(5)，(6)および(7)式となる。

\[\int_{0}^{R} \rho_r C_r \delta \frac{\partial T}{\partial t} d(\pi r^2) = \int_{0}^{R} 2 \rho_r C_r \delta \frac{\partial T}{\partial r} R_b \pi r^2 \frac{\partial T}{\partial t}

\[= \rho_r C_r \delta \pi R_b \frac{\partial T}{\partial t} \] (4)

\[T_r = \frac{T_{\text{max}} + T_{\text{min}}}{2} \]

このこと，T_{\text{max}}およびT_{\text{min}}はそれぞれ液面における最高および最低温度(℃)である。

\[\int_{0}^{R} 2 \rho_r C_r \delta \frac{\partial T}{\partial r} R_b \pi r^2 \frac{\partial T}{\partial r} dr \]

任意の場所(1)式が成立つと仮定すると，

\[\frac{\Delta T}{\Delta r} \approx \sqrt{2} u_{\text{max}} \delta \]

また，

\[\int_{0}^{R} \frac{\partial T}{\partial r} R_b \pi r^2 \Delta r \]

したがって，

\[\int_{0}^{R} 2 \rho_r C_r \delta \frac{\partial T}{\partial r} R_b \pi r^2 \frac{\partial T}{\partial r} \]

\[= Q_{\text{c}}, \delta \] (5)

ここに\(u_{\text{max}} \)はuおよび\(\delta \)の積の平均，\(\Delta T, \delta \)は液面に沿った温度差(℃)である。

\[\int_{0}^{R} R_b \Delta \pi r^2 d(\pi r^2) = R_b \Delta \pi r^2 \]

\[= \int_{0}^{R} 2 \rho_r C_r \delta \frac{\partial T}{\partial t} R_b \pi r^2 \frac{\partial T}{\partial t} \]

\[= \int_{0}^{R} 2 \rho_r C_r \delta \frac{\partial T}{\partial r} R_b \pi r^2 \frac{\partial T}{\partial r} \]

\[= Q_{\text{c}}, \delta \] (5)

ここに，Q_cは平均のふく射熱流束(cal/cm²·min)である。したがって(3')式は(8)式となる。

\[Q_{\text{c}} = \frac{1}{I_0} \int_{0}^{R} R_b \Delta \pi r^2 d(\pi r^2) \]

\[= \int_{0}^{R} 2 \rho_r C_r \delta \frac{\partial T}{\partial r} R_b \pi r^2 \frac{\partial T}{\partial r} \]

\[= \int_{0}^{R} 2 \rho_r C_r \delta \frac{\partial T}{\partial r} R_b \pi r^2 \frac{\partial T}{\partial r} \]

\[= \frac{1}{I_0} \int_{0}^{R} Q_{\text{c}}, \delta \] (5)

(9)式の右辺第2項については，これまでのデータを用い計算することが出来るが，問題は右辺第1項の(10-23)式における(1/2)項を考える必要がある。
Fig. 18 Emission spectrum of hexane flame (left) and spectral transmission of liquid hexane (right).

\[\delta = \frac{1}{13.7} \ln \left(\frac{I_0}{I_0 - I_1} \right) \]

ここに, \(I_0 \) は入射光強度, \(I_1 \) は吸収光強度である。

Fig. 19に(5), (6), (7)および(8)式を使って得た蒸発に必要な平均伝熱假想厚さ \(\delta \) と時間との関係を示す。Fig. 19から \(\delta \) はかなり薄いことがわかる。うすの半径が小さくなり, 速度が落ちてくると, その分, 火からのふ\(4.3 \mu \)く射によっておぎなわなければならいないため, \(\delta \) が増していく。Fig. 19には炎からのふく射熱のうち, \(\delta \) 内に吸収された熱流量が, 液体の蒸発に寄与する割合を示した曲線も同時に示した。この図からふく射熱が液体の蒸発に寄与する割合が最小になる時間, つまり点火約2分後には液面に到達したふく射熱の大半が液体を暖めるのに使われていることがわかる。また炎から液体に入った全熱流量は仮定から(0)式が成立つ。

\[Q_T = \left(\frac{I_0}{I_0} \right) Q_R + \left(\frac{I_1}{I_0} \right) \delta + Q_l \]

\[= Q_v + Q_l \]

ここに, \(Q_T \) は炎から液体に入れた全熱流量(\(\text{cal/min} \))である。Fig. 20に \(Q_v \), \(Q_l \) および \(Q_T \) と時間との関係を示す。なお, \(Q_v \) は燃焼速度から, \(Q_l \) は各時間ごとの液面等温線図から求めた。

4.2 液内流動を起こす推進力に関する考察

Muradらは*2)に浅い容器にヒーターをおき, 液面の一部を加熱し, Marangoni (Ma) 数およびRayleigh (Ra) 数を用いて熱入力エネルギーと液内流動との関係を示している。彼らの実験に用いたのは壁温度を恒温に保つようにした浅いプールであるのに対し, ここでは火炎が
存在し、壁は断熱ではないため、炎からの熱入力によって液温も壁温も変るいわゆる非定常状態であるが、液内流動の強さと炎から液面への熱入力との相関をMurodら、および磯田らのとったと同じ手法によって考察できるかどうか、実験結果をもとに確かめてみた。いま、液面では液面温度分布からくる表面張力の差だけが力であると考え、各時間における垂直方向の速度こう配（du/dy）と表面張力こう配による剪断応力（dσ/dx）のプロットをとると、Fig.21のようになる。
Fig.21には深さ30mmの水の上にヘキサンを30mm張った時のデータも同時にのせた。ここに、σは表面張力（dyne/cm）、yは垂直方向の長さ（cm）、xは水平方向の長さ（cm）である。Fig.21の直線のこう配から液体の粘性係数μ（g/cm·s）を求めるとき、初めのヘキサンの深さが60mmの時はμ=5.1×10⁻³g/cm·s、初めのヘキサンの深さが30mmの時はμ=5.6×10⁻³g/cm·sを得る。この値は実際のヘキサンの20℃における値3.37×10⁻³g/cm·sにオーダー的に一致している。したがって、非定常状態であっても次の式が成立つ。

$$\frac{d\sigma}{dx} = A\frac{du}{dy} + B$$

これに、A=μ、Bは初めのヘキサンの深さによってうずの大きさなどが異なるので、うずの生成に関与している項。したがってオーダ的にはO(μ(δ²υ)/(δx·δy))である。

液面あいかは液面横では表面張力差が流動を起こす推進力であると考え、各時間ごとの水平方向の最大流入と、温度差と有効品力の積（ΔT・h₀）の対応をとるとFig.22に示すような直線関係が得られる。また、液面では浮力が推進力であると考え、各時間ごとの垂直方向の最大流束と温度差（ΔT₉）の対応をとると、これもFig.22に示すように直線関係が得られる。

ここに、ΔT₉は容器の中心における液面と有効品力の値h₀との間の温度差（℃）である。Fig.22のu₉ₓ、対ΔT₉の関係を示す直線のこう配は（(σT/μ)(1/R)(1/h₀)）にオーダー的に等しいので、u₉ₓのオーダーは13式で近似される。

$$u_{max} = 0 \left(\frac{k}{\mu} \cdot h_{0} \cdot \Delta T_{9} \right)$$

またv₉ₓ、対ΔT₉直線のこう配は（(βgR²/υ)(1/h₀)）にオーダー的に等しいので、v₉ₓのオーダーは10式で近似される。
Fig. 22 Relation between maximum horizontal fluid velocity (open circle) and $\Delta T_s \cdot h_e$, and relation between maximum vertical fluid velocity (solid circle) and ΔT_h.

(Arabic numerals by the data points show the time after ignition in minute.)

\[v_{max} = 0 \left(k' \frac{\beta g R^2}{\nu} \cdot \Delta T_h \right) \] \hspace{1cm} (14)

ここで，$k' = 1.1/\epsilon_h$，$k' = (l_h/R)^2$，l_h は速度分布が直線的であると仮定した場合の $u=0$ における垂直方向の長さ（cm），l_h は $v=0$ における水平方向の長さ（cm)，$eta$ は液体の体膨張係数（C⁻¹），$
u$ は動粘度係数（cm²/s），g は重力の加速度（cm/s²）である。$1.1/\epsilon_h$ の値は時間に関係なく，0.18 である。また l_h/R の値はオーガの式の $l_h/R = 0.1/l_h$ である。式（13）と Murad らの式との違いはブールが深いので一次元流れの補正として k' および k'' を含むことである。式（13）(14)の v_{max} および v_{max} を用いて液面と液内の Peclet (Pe) 数および Rayleigh 式を求める。

\[
Pe = \frac{u_{max} \cdot R}{a} = 0 \left(k' \frac{\sigma_T \Delta T_h}{\mu a} \right) \] \hspace{1cm} (15)

\[
Pe = \frac{v_{max} \cdot R}{a} = 0 \left(k' \frac{\beta g R^2 \Delta T_h}{\nu a} \right) \] \hspace{1cm} (16)

以下オーガの対応を求めるので，記号を簡略化するため，k' および k'' を省略すると(17)および(18)式が得られる。

ただし，$h_e = 0(R)$

\[
Ma = \frac{\sigma_T \Delta T_s}{\mu a} \] \hspace{1cm} (17)

\[
Ra = \frac{\beta g h_e^2 \Delta T_s}{\nu a} \] \hspace{1cm} (18)

ここに，a は液体の温度伝熱率（cm²/s）である。次にこれまでの実験結果から，燃焼の初期には液体に入った熱の大部分が液体流動によって運ばれると考えられるので，(19)，(20)式が成立つ。

\[
q_t \propto u_{max} \rho \sqrt{C_i \Delta T_s} \] \hspace{1cm} (19)

\[
q_t \propto v_{max} \rho \sqrt{C_i \Delta T_s} \] \hspace{1cm} (20)

ここで q_t は冷却液に手入れした冷却流束（cal/cm².min）である。

ここで，Ma 数あるいは Ra 数を使い，流動の強さの代表値として最大流速と液面に入り熱流速との関係を求める(21)，(22)式が成立つ。

\[
u_{max} \propto \left[\frac{\sigma_T}{\mu C_i \rho} q_t \right]^{1/2} \] \hspace{1cm} (表面張力) \hspace{1cm} (21)

\[
u_{max} \propto \left[\frac{\beta g h_e^2}{C_i \mu} q_t \right]^{1/2} \] \hspace{1cm} (浮力) \hspace{1cm} (22)

Fig. 23 および 24 に示す。この式を使った各時間における表面張力によって生じる最大流速および浮力によって生じる最大流速の対応を示す。これらから空気の液面流動を起こす推進力として，液面付近では表面張力差が，液内では浮力が圧力的に強く作用していることが分る。また，原点を通らないのは表面張力と浮力の相補作用によるものと思われる。以上の結果から比較的深いブールにおける自由燃焼の場合も，Murad に準じた考え方で処理できることが分った。

4.3 物質移動流束と Ma/Ra 比からみた燃焼速度

(1)，(2)式から得られる物質移動流束と燃焼速度の関係を図に示す。文献36）参照）

\[Ra \propto 2 \sqrt{2} \rho \mu_{max} \Delta \delta / R \] \hspace{1cm} (23)

ここで，$2 \sqrt{2} \rho_{max} \Delta \delta / R$ は物質移動流束（g/cm².min）
Fig. 23 Relation between maximum horizontal fluid velocity and surface tension drive. (Arabic numerals by the data points show the time after ignition in minute.)

Fig. 24 Relation between maximum vertical fluid velocity and buoyancy drive. (Arabic numerals by the data points show the time after ignition in minute.)

Fig. 25 Relation between burning rate and mass transport flux. (Arabic numerals by the data points show the time after ignition in minute.)

Fig. 26 Relation between Φ/Φ^* and dimensionless velocity u_{max}/u_{max}. (Arabic numerals by the data points show the time after ignition in minute. $X = \Phi/\Phi^*$, $V = u_{max}/u_{max}$)

流速u_{max}/u_{max}の関係を、Fig. 27 にΦ/Φ^*と無次元伝熱速度δ_{min}/δとの関係を、さらに、Fig. 28 に無次元伝熱速度とΦ/Φ^*との関係を示す。ここに$\Phi = Ma/Ra$, $\Phi^* = (Ma/Ra)_{min} = 0.019$, $u_{max} = 13.3\text{cm}/\text{s}$, $\delta_{min} = 0.012\text{cm}$, dは容器の直径, λは液体の熱伝導率 (cal/cm · S · °C) である。

Fig. 26～Fig. 28 から伝熱速度に物質移動流束と Ma/ Ra 比が関係していることがわかる。また4分および以下の伝熱速度は、ほとんど問題にならなかった炎の底部と液面との距離の開きが大きく作用して
Fig. 27 Relation between ϕ/ϕ* and dimensionless heat transfer thickness δ_min/δ. (Arabic numerals by the data points show the time after ignition in minute, T = δ_min/δ.)

Fig. 28 Relation between dimensionless burning rate R_b dC/λ and ϕ/ϕ*. (Arabic numerals by the data points show the time after ignition in minute, Y = R_b dC/λT.)

5. 結 論

液下での対流をもとめた燃焼機構は以下のようにまとめられる。直径26mmのガラス容器に入った液体に点火した場合、容器の方が液体より温度伝達率が大きいため、最初に容器壁が暖まる。その後、壁と液中心との間の温度差が生じ、液面で表面張力差が現れる。この表面張力差で表面層が生じ、ついて、液面での水平方向の温度差と粘性のため液内対流を引き起こす。炎から液面へ入った熱流量の一部は液内流動に使われ、蒸発が制御され、表面流と液内対流の釣り合いで燃焼速度に極小値が表われる。そして液内対流による温度場が均一化されたのちに浮力を失い、表面流と液内対流との釣りがずれ、燃焼速度が増加する。燃焼速度が最大となった後の燃焼速度の低下は、炎と液面との距離が縮め過ぎの結果、液面へ到達する熱流量の減少に

さて、4分以前のものと燃焼機構が変わってきていることもわかる。いまFig.26～Fig.28をもとに物質移動速度とMa/Ra比を使った燃焼速度式を求めると、下記および図式が得られる。（付録4）(13)参照

\[
\frac{R_b dC_l}{\lambda} = 0.75P_e \left(\frac{Ma}{Ra} \right) \delta \quad (t \leq 4 \text{分}) \tag{20}
\]

\[
\frac{R_b dC_l}{\lambda} = 0.95P_e \left(\frac{Ma}{Ra} \right) \delta \quad (t > 4 \text{分}) \tag{21}
\]

ただし、P_e = Re Pr, Re = \frac{u_{max}}{v} \delta_{min}

ここに、P_eは特性Peclet数、Reは特性Reynolds数、PrはPrandtl数である。tは点火後の時間である。

いま液内対流が非常に小さくなってきた炎の後半に注目すると、これは液内対流を無視したSpaldingのモデルに類似である。そこで⑩式を変形すると、図式となり、Spaldingの燃焼速度式(11)である図式と類似となる。

\[
\frac{R_b dC_l}{\lambda} = 0.95P_e \delta \quad (t \leq 4 \text{分}) \tag{20}
\]

\[
\frac{R_b dC_l}{\lambda} = 0.45B \delta \quad (t > 4 \text{分}) \tag{21}
\]

ここに、Gr10およびGr11はそれぞれ、液体および、気体の性質を使ったGrashof数、C_eは気体の比熱、λ_eは気体の熱伝導率、BiはTransfer数である。次に(10)式が図式とまったく同じ型になるとして、P_e = 19.03, Pr = \nu/\alpha = 5.67, Ma数は対流の影響のないとする4分30秒におけるMa = 4.7×10^5を用いると、Bi = 3.2, または6分30秒におけるMa = 3×10^5を用いると、Bi = 3.9となり、液内対流が弱くなればなるほど、SpaldingのB数に近づく傾向が得られる。ここにBiは液体の性質および液面での流動状態から得られる推進力である。

結論、燃焼中に液内対流をもとまない場合の燃焼速度は物質移動流速とMa/Ra比によって決定されることがわかった。
よる。

また、熱収支から得た伝熱仮想厚みと水平方向の最大流速と、およびMa数とRa数の比を使った次元解析から、燃料の前半および後半の2つの領域における無次元燃焼速度を求めた。特に前者の領域では液内対流と表面流との干渉効果で解析し、また後者の領域では液内対流のないSpaldingのモデルと類似の機構をと

ることがわかった。

おわりに、この研究で対象とした問題を筆者に提示され、発熱の前導け時間を設けた東京理科大学理学部半田淳教授およびこの研究に御協力をいただいた東京理科大学大学院生高橋健次（現在、㈱）高砂熱学勤務）に心から御礼申し上げます。

引用文献

2) 奥野：第7回燃料シンポジウム前熱便, P.87, 1969
9) 坂本：機械の研究, 23, 45(1971)

付録

1) 体積要素を出すする質量流量の求め方

本文Fig.17-(a)から(1)式が成立つ。

\[2\pi \rho_l (r + \Delta r) \left(u + \frac{\partial u}{\partial r} \Delta r + \frac{\partial u}{\partial \delta} \Delta \delta \right) (\delta + \Delta \delta) \]

\[= 2\pi \rho_l \Delta r + 2\pi \rho_l r \Delta r \]

(1)式はもし、\(\Delta r \delta, \Delta \delta \delta, \Delta r \Delta \delta \)を含む項を省略すれば(2)式となる。

\[\rho_l \Delta r \left(\frac{\delta \delta}{\delta} + \frac{1}{u} \frac{\partial u}{\partial r} \Delta r + \frac{1}{u} \frac{\partial u}{\partial \delta} \Delta \delta + \frac{\Delta r}{r} \right) \]

\[= \rho_l \Delta r \Delta \delta \Delta r \]

(2)

ここで、もし \(\frac{\partial u}{\partial r} \Delta r \approx \frac{\partial u}{\partial \delta} \Delta \delta \)ならば(2)式は(3)式となる。

\[\rho_l \Delta r \left(\frac{\delta \delta}{\delta} + \frac{1}{u} \frac{\partial u}{\partial r} \Delta r + \frac{1}{u} \frac{\partial u}{\partial \delta} \Delta \delta + \frac{\Delta r}{r} \right) = \rho_l \Delta r \Delta \delta \Delta r \]

(3)

また、\(\frac{\partial u}{\partial r} \Delta r \approx \frac{\partial u}{\partial \delta} \Delta \delta \)ならば(2)式は(4)式となる。

\[\rho_l \Delta r \left(\frac{\delta \delta}{\delta} + \frac{1}{u} \frac{\partial u}{\partial r} \Delta r + \frac{1}{u} \frac{\partial u}{\partial \delta} \Delta \delta + \frac{\Delta r}{r} \right) = \rho_l \Delta r \Delta \delta \Delta r \]

(4)

2) 同じ体積要素を出すする質量のエネルギーの式の求め方

\[2\pi \rho_l \Delta r (r + \Delta r) \left(\frac{u + \partial u}{\partial r} \Delta r + \frac{\partial u}{\partial \delta} \Delta \delta \right) (\delta + \Delta \delta) \]

\[\frac{\partial T^*}{\partial r} + \frac{\partial T^*}{\partial \delta} \Delta r + \frac{\partial T^*}{\partial \delta} \Delta \delta \]

\[+ (\frac{1}{\rho_l}) \frac{2\pi \rho_l \Delta r}{2\pi \rho_l r \Delta r} \approx 2\pi \rho_l \Delta r \frac{\partial T^*}{\partial r} \Delta r \left(\delta + \Delta \delta \right) \]

\[\times \left(\frac{L}{\rho_l} \frac{\partial T^*}{\partial r} + \frac{\partial T^*}{\partial \delta} \Delta \delta \right) \]

\[= \rho_l \Delta r \Delta \delta \Delta r \Delta \delta \]

(5)

(5)式はもし、\(\Delta r \Delta \delta, \Delta \delta \Delta \delta, \Delta r \Delta \delta \)を含む項を省略すれば(6)式となる。

\[\rho_l \Delta r \left\{ \frac{\partial T^*}{\partial r} + \frac{\partial T^*}{\partial \delta} \Delta \delta \right\} \]

\[= \rho_l \Delta r \Delta \delta \Delta r \Delta \delta \]

(6)

ここで、もし \(\frac{\partial T^*}{\partial r} \Delta r \approx \frac{\partial T^*}{\partial \delta} \Delta \delta \)ならば(6)式は(7)式となる。

\[\frac{\partial T^*}{\partial r} = \frac{2\pi \rho_l \Delta r}{\rho_l \Delta r} \frac{\partial T^*}{\partial \delta} \frac{\partial \delta}{\partial \delta} \Delta \delta \]

\[= \rho_l \Delta r \Delta \delta \Delta r \Delta \delta \]

(7)

ただし、\(T^* = T^* - T_a \), \(\frac{\partial T^*}{\partial r} = 0 \), \(\frac{\partial T^*}{\partial \delta} = 0 \)

また、\(\frac{\partial T^*}{\partial r} \Delta r \approx \frac{\partial T^*}{\partial \delta} \Delta \delta \)ならば(6)式は(8)式となる。

\[\frac{\partial T^*}{\partial r} = \frac{\partial T^*}{\partial \delta} \frac{\partial \delta}{\partial \delta} \Delta \delta \]

\[= \rho_l \Delta r \Delta \delta \Delta r \Delta \delta \]

(8)
3) 物質移動流束と燃焼速度の関係

(4)式から
\[
R_b \Delta r = \rho \Delta (ru \delta)
\]
\[
\rho \Delta (ru \delta) = \rho u \delta \Delta r
\]
\[R_b (\pi r^2) = 2\pi \rho u \delta \Delta r
\]
\[\int_0^R R_b (\pi r^2) = R_b \pi R^2
\]
\[\int_0^R 2\pi \rho u \delta dr = \int_0^R 2\pi \rho u \delta dr
\]
\[u_{\text{max}} = 0 \quad (v_{\text{max}}) \quad u \equiv \sqrt{2} u_{\text{max}}
\]
したがって、\(\overline{u} \equiv \sqrt{2} u_{\text{max}} \overline{\delta}
\]
この結果(10)式は(11)式となり(12)式を得る。

\[\int_0^R 2\pi \rho u \delta dr = 2\sqrt{2} \rho u_{\text{max}} \overline{\delta} \int_0^R / R
\]
\[R_b \approx 2\sqrt{2} \rho u_{\text{max}} \overline{\delta} / R
\]

4) 物質移動流束とMa/Ra比を使った燃焼速度式

\[R_b \approx \rho u_{\text{max}} \overline{\delta} / R
\]
\[\frac{R_b \Delta r_{\text{cl}}}{\lambda_1} = \frac{C_f \rho u_{\text{max}} \overline{\delta}}{\lambda_1} - \frac{Re \nu}{\alpha} = RePr
\]

ただし、\(\alpha = \frac{\lambda}{\rho C_l'}\)、\(Re = \frac{u_{\text{max}} \overline{\delta}}{\nu}, \quad Pr = \frac{\nu}{\alpha}
\]

本文Fig.26およびFig.27から

\[Re = Re^* \left(\frac{\phi}{\phi^*} \right)^{\frac{1}{2}}
\]

ただし、\(Re^* = \frac{u_{\text{max}} \overline{\delta}_{\text{min}}}{\nu}
\]

(10)式を(13)式に代入すると(14)式を得る。

\[\frac{R_b \Delta r_{\text{cl}}}{\lambda_1} = ARePr \left(\frac{\phi}{\phi^*} \right)^{\frac{1}{2}} = ARe^* \left(\frac{\phi}{\phi^*} \right)^{\frac{1}{2}}
\]

ただし、\(A\)は定数、\(Re = RePr
\]

次に本文Fig.26の関係を用いると(15)式を得る。

\[\frac{R_b \Delta r_{\text{cl}}}{\lambda_1} = 0.755Pe \left(\frac{Ma}{Ra} \right)^{\frac{1}{2}}
\]

ただし、\(\phi = Ma/Ra, \quad \phi^* = (Ma/Ra)_{\text{min}}\)である。

(15)式は燃焼の前半の式であるが、後半の式もまったく同様な方法によって得られる。
The Effect of the Convective Motion in the Liquid on the Liquid Burning Rate

(Abstracts)

by

Taro Yumoto

(Received November 25, 1975)

An experimental study was made to explore the effect of the convective motion in the liquid on the burning rate of hexane. Hexane was burned in the cylindrical glass vessel of 26mm in diameter, and the convective motion in the liquid and the cellular convection near the liquid surface were observed by means of particle tracer technique and shadow photography, respectively.

Measurements were further made on burning rate of liquid, the radiation flux from the flame to the liquid surface, and on temperatures in both the liquid and the vessel wall.

From these data the explanation of the mechanism of combustion accompanying the convective motion of the liquid in the vessel was made and following equations for predicting the burning rate of liquid fuel were obtained.

1) The first half of combustion (Up to 4 minutes after ignition)

\[
\frac{R_b}{\Lambda_t} = 0.755Pe^* \left(\frac{Ma}{Ra}\right)^{\frac{1}{2}} \\
P_e^* = Re^* Pr, \quad Re^* = \frac{\mu_{max} \, \delta_{min}}{\nu}
\]

2) The second half of combustion (Over 4 minutes after ignition)

\[
\frac{R_b}{\Lambda_t} = 0.956Pe^* \left(\frac{Ma}{Ra}\right)^{\frac{1}{4}}
\]

Equation (2) was rewritten to the same form, Eq. (3), as Spalding's equation predicting the burning rate of liquid fuel, and the Transfer number \(B_l \) was defined by the physical properties of the liquid and the scale of the convective motion of the liquid.

\[
\frac{R_b}{\Lambda_t} = 0.45B_l^{\frac{3}{4}} \, Gr^{\frac{1}{4}} \\
B_l = 2.731Pe^{\frac{1}{3}} Ma^{\frac{1}{3}} Pr^{\frac{1}{3}}
\]
Where R_b is the burning rate (g/cm2·min), d the diameter of the vessel (cm), λ_l the thermal conductivity of the liquid (cal/cm·min·°C), ν the kinematic viscosity of the liquid (cm2·min), C_l the specific heat of the liquid (cal/g·°C), Pe^* the characteristic Peclet number, Re^* the characteristic Reynolds number, Pr the Prandtl number, Ma the Marangoni number, Ra the Rayleigh number, $Gr(l)$ the Grashof number, u_{max} the characteristic maximum horizontal fluid velocity at the liquid surface and δ_{min} the minimum heat transfer thickness for vaporization obtained from heat balance. In this case, u_{max} is 13.9 cm/s, and δ_{min} is 0.0012 cm.
酸素発生式呼吸器の開発研究(1)
——超酸化カリウムの酸素発生等反応特性について——

高橋 哲

（昭和50年12月11日受理）

1. はじめに

酸素発生式呼吸器の開発に先立って、酸素供給源となる酸素発生剤K₂Oに人体を通じた時の酸素発生特性、炭酸ガス吸収率、破局温度ならびに温度等の諸量を実験的に検討した。

さらに、この結果を解析することにより反応特性に及ぼす幾つかの共通因子が認められ、ある程度定量化しうる見通しをえたので、現在までに判明した事実を述べる。

2. 実験方法

酸素発生試験の場合、装着感のような最終的には人が装着してみなければ理解できない部分がある。しかしこの生理的主観的問題は通常比較的限定されたもので、大半は機器性能として実験室で模擬でき、安全上からもむしろこの方がよいと考えられる。

K₂O粒に対する通気試験は主として連続通気法で行なったので、人が呼吸に対応する断続通気法の結果は、ここには一例を挙げに止める。

通気試験装置をFig. 1に示す。

continuation of text...
を、温度測定にはデューセル露点計およびエース温度計(K・K エース研究所製)を使用した。

浄化ガス、薬剤層の温度はクロメル—アルメル熱電対で測定した。

酸素発生缶はFig. 2 のような、ステンレス製反応容器を改造したものを作った。

試験ガス、呼気ならびに乾燥空気の組成をTable 1 に示す。

Table 1 の試験ガスの組成は呼気とわずかに相違するが、実用上は呼気が呼気管で冷却されたり、水分の一部が凝縮したりするので全く問題にならない。

![Fig. 2 Schematic of KO₂ tests canister](image)

<table>
<thead>
<tr>
<th>Component</th>
<th>O₂</th>
<th>CO₂</th>
<th>H₂O</th>
<th>N₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration</td>
<td>mmHg</td>
<td>%</td>
<td>mmHg</td>
<td>%</td>
</tr>
<tr>
<td>Test gas</td>
<td>143.6</td>
<td>18.9</td>
<td>30.4</td>
<td>4.0</td>
</tr>
<tr>
<td>Exhaled gas</td>
<td>116</td>
<td>15.3</td>
<td>32</td>
<td>4.2</td>
</tr>
<tr>
<td>Dry air</td>
<td>159.1</td>
<td>20.9</td>
<td>0.04</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Remark: Test gas means composed exhaled gas.

3. 実験結果

造粒K₂Oの密度は、できる限り大きかった方が発生缶を小型化できる。しかし同時に酸素発生力が低くなるか、通気抵抗も低い程よい。ここでは、幾種類の形状のK₂Oに試験ガスを通し、また一部のものには水蒸気、炭酸ガスを単独に通じて、これらの反応の特性を把握した。

K₂O粒子は合成されたときの形状のままの多孔質K₂O（以後P-K₂Oで示す）、造粒機で打鍛したもの（T-K₂O）およびP-K₂Oを油圧プレスで120～150kg／cm²で圧縮し、得たレンガ状塊を破砕機で砕いたもの（G-K₂O）について試験した。

P-K₂O、T-K₂O、G-K₂Oの各々の真比重と充填密度をTable 2に、各々の形状を示す写真をPhoto's No.1～No.3に示す。

Table 2

<table>
<thead>
<tr>
<th>Grain type</th>
<th>Specific gravity (g/cm³)</th>
<th>Gravity when packed (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porous K₂O (2～3 mesh)</td>
<td>0.41</td>
<td>0.26～0.3</td>
</tr>
<tr>
<td>Tablet K₂O (9mmφ×3mm thick)</td>
<td>1.51</td>
<td>1.0</td>
</tr>
<tr>
<td>Granular K₂O 2～3 mesh</td>
<td>1.48</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Photo's Examined grain of different shape

No. 1: Porous-KO₂ (P-KO₂)
No. 2: Granular-KO₂ (G-KO₂)

No. 3: Tableted-KO₂ (T-KO₂)
Right, before used
Middle, after used (not deformed)
Left, catalyst (MnO₂) is added.
3. 1 P-KO₂とT-KO₂の反応特性

P-KO₂とT-KO₂への通気結果をFig. 3に示した。

Fig. 3 Flow tests of porous KO₂
Flow gas composition is described in Table 1

<table>
<thead>
<tr>
<th>Gas</th>
<th>P-KO₂ 75g (2-3 mesh)</th>
<th>P-KO₂ 75g + MnO₂ 1g (Sprayed)</th>
<th>Tablet-KO₂ 75g</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₃</td>
<td>○</td>
<td>△</td>
<td>□</td>
</tr>
<tr>
<td>CO₂</td>
<td>●</td>
<td>▲</td>
<td>•</td>
</tr>
</tbody>
</table>

Flow rate 10l/min at 35℃.

さらにP-KO₂が、H₂OおよびCO₂とそれぞれ単独ではどのように反応するか謎味があるので、H₂Oを5.59％およびCO₂を4％単独に含む35℃の混合気をつくり、10l/minの通気量で試験した結果をFig. 4に示す。

Fig. 4 Flow tests of porous KO₂
Reactive characteristics of each H₂O vapour and CO₂ alone, a comparison with composed exhaled gas (Fig. 3).

--- CO₂-Air (4%)
--- H₂O-Air (5.59%)
--- CO₂ breakthrough concentration
Flow rate 10l/min at 35℃

3. 2 G-KO₂の反応特性

G-KO₂については特に詳細に試験した。酸量、通気量、触媒添加（MnO₂）の有無、発生物の初期温度等を変化させ、またNo. 5の1例については断続通気を行った場合についても酸素濃度、炭酸ガス濃度、水蒸気圧、浄化ガス並びに薬剤層温度を比較のため測定して次のFig. 5に示した。
Fig. 5 Flow tests of Granular-KO$_3$
Test gas composition is described in Table 1

Comments on Fig. 5

t: Time (minutes) after passing test gas into the canister.

T: Temperature ($^\circ$C) of regenerated gas and KO$_3$-bed.

Φ_{H_2O}: H$_2$O vapour pressure (mmHg) in the regenerated gas.
Run No.	Flow rate (l/min)	Test condition of canister
1 | 10 | 30°C
2 | 30 | 30°C
3 | 30 | 0°C
4 | 30 | 0°C, 0.2%-MnO₂ Catalyst contained
5 | 50 | 30°C
6 | 30 | 30°C, comparison of non-Catalysed and catalysed granules.

Symbols in Graphs are unified as follows for [O₂], [CO₂], P_H₂O and regenerated gas temperature.
For No. T, 2, 3 and 5
- X - 150g (Weight KO₂ used, 2~3 mesh, 78% purity)
- o - 200g
- △ - 250g
- □ - 350g
- ● - 450g
- ● - 450g " Breathing at 20 rev/min.

For No. 4 marked as follows.
- o - 200g (0.2% MnO₂ contained)
- △ - 250g (0.2% MnO₂ contained)
- □ - 350g (0.2% MnO₂ contained) + 100g (non-catalysed)

For No. 6
- o - 450g non-catalysed
- ● - 450g catalysed (0.1% MnO₂)

in No. 6-3 the temperature is marked as follows.
- o - regenerated gas (non-catalysed)
- ● - regenerated gas (catalysed)
- △ - KO₂ bed (non-catalysed)
- □ - KO₂ bed (catalysed)

G-KO₂ bed temperature are marked as follows.
- △ - 250g
- □ - 350g
- ● - 450g
- ● - 450g Breathing at 20 rev/min. (No. 5-3)

4. 検討と考察

4.1 KO₂と呼気の反応

KO₂は呼気中に触れると、そのH₂OおよびCO₂を吸着した後、Table 3 のに示すように多数の行程をへて反応しO₂を放出する。純粹なKO₂は乾燥したCO₂とは常温で反応しないことが知られている。CO₂とは微量のH₂Oが介在した時にのみ式(1), (2)の順に反応し、結果として式(3)のとおりに進行したごくに終了する。
しかし本稿のKO₂には約20%のKOHが含有されてい
るため、Fig. 4 のように乾燥させたCO₂を含む空気とも活発に反応する。

反応1ではH₂O 1molに対してO₂ 1.5molが放出されるが、実際には一次的に0.5molが放出されるにとどまる。これは、まず反応16が行なわれるからである。

したがって、呼吸器用に使用するときは、呼気中のH₂Oのみでは必要O₂を供給されない可能性を示しており(Fig. 4), 触媒を添加するか、またはCO₂が共存することによってのみ実用的な反応速度が期待できると考えられる。

すなわちH₂O, CO₂は共存して反応し、酸素発生剤の化学的呼吸器CRQが人工的人工呼吸器RQとの間関係を満たさなければならない。

\[CRQ \leq RQ \]

(1)
Table 3 Potassium Superoxide Reactions

<table>
<thead>
<tr>
<th>Reactions</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) 2KOH(s) + H₂O(g) → 2KOH(s) + 3/2O₂(g) + 10.4 kcal</td>
<td></td>
</tr>
<tr>
<td>2) 2KOH(s) + CO₂(g) → K₂CO₃(s) + H₂O(g) + 33.71</td>
<td></td>
</tr>
<tr>
<td>3) 2KOH(s) + CO₂(g) → K₂CO₃(s) + 3/2O₂(g) + 44.55</td>
<td></td>
</tr>
<tr>
<td>4) KOH(s) + CO₂(g) → KHCO₃(s) + 33.23</td>
<td></td>
</tr>
<tr>
<td>5) KOH(s) + 3/4H₂O(g) → KOH·3/4H₂O(s) + 16.53</td>
<td></td>
</tr>
<tr>
<td>6) KOH(s) + H₂O(g) → KOH·H₂O(s) + 19.93</td>
<td></td>
</tr>
<tr>
<td>7) KOH(s) + 2H₂O(g) → KOH·2H₂O(s) + 33.8</td>
<td></td>
</tr>
<tr>
<td>8) K₂CO₃(s) + 1/2H₂O(g) → K₂CO₃·1/2H₂O(s) + 7.59</td>
<td></td>
</tr>
<tr>
<td>9) K₂CO₃(s) + 3/2H₂O(g) → K₂CO₃·3/2H₂O(s) + 22.77</td>
<td></td>
</tr>
<tr>
<td>10) K₂CO₃(s) + H₂O(g) + CO₂(g) → 2KOH·2CO₃(s) + 32.75</td>
<td></td>
</tr>
</tbody>
</table>

Furthermore, the following reaction 11 ～ 15 are known as intermediate process.

at below 10°C

<table>
<thead>
<tr>
<th>Reactions</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>11) 2KOH + nH₂O → K₂O₂·nH₂O + O₂</td>
<td></td>
</tr>
<tr>
<td>at 10°C</td>
<td></td>
</tr>
<tr>
<td>12) K₂O₂·nH₂O → 2KOH + (n-1)H₂O + 1/2O₂</td>
<td></td>
</tr>
<tr>
<td>and else</td>
<td></td>
</tr>
</tbody>
</table>

4.2 濃化ガス中の酸素濃度の評価方法

試験ガスは濃化された後、これを再吸入できるか否か（CO₂），水蒸気圧PₕH₂Oとの関連の下に主として（O₂）について検討する。

（O₂）は第一義的に行うが、空気中の平常の濃度20.5%を保っているとよいと考えられるが、人の酸素消費量と炭酸ガス呼出量が一般に等しくないことから、酸素濃度が20.5%以上を保っているも総合ガス量の減少1/2O₂呼出量をきたすことがある。

通気試験から、その条件下での使用可能時間範囲は次のように計算決定することができる。

試験ガスは濃化され次のように組成変化する。
<table>
<thead>
<tr>
<th>組成</th>
<th>濃化ガス</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂</td>
<td>V₀φ₁</td>
</tr>
<tr>
<td>CO₂</td>
<td>V₀φ₂</td>
</tr>
<tr>
<td>H₂O</td>
<td>V₀φ₃</td>
</tr>
</tbody>
</table>

N₂ : V₀(1-Σφ₄) V(1-Σφ₁)

ここで；V₀，V は単位時間に流れる流入するガスの総量；φ₁，φ₂ は流入、流出するガス中の各成分の濃度である。

呼吸器RQは一般に0.8から1.0の間にあり、日本人では平均0.9位といわれている。一方、発生されるO₂の量は消費量以上でなければならないので

Wφ₁-V₀φ₂≥V₀φ₂/RQ

すなわち φ₁≥(φ₂+φ₃/RQ)V₀/V (2)

が成立する。

使用可能時間の限界として、O₂以外にCO₂およびH₂Oに関しても許容濃度を考え、何時か一方の濃度が元の試験ガス中のそれに対し等しくなる時点を設ける。

CO₂の増大とH₂Oの増大は通気後半では傾向として同じであり、一方が元のガス濃度に等しくなるような時点を終点としておけば安全と考えられる。

すなわち

Vφ₂≤V₀φ₂

or Vφ₁≤V₀φ₁

したがって、濃化ガスの総量Vは次のように表わされる。

V=V₀φ₁+V₀φ₂/(RQ)+(0−V₀φ₂)+(0−V₀φ₃)

+ V₀(1−Σφ₄) (4)
式(4)を書くと、
\[V_0 (1 + \phi_3^2 / \Delta R - \phi_3^2 \phi_4^2) \leq V \leq V_0 (1 + \phi_3^2 / \Delta R) \]
(5)
となる。

式(5)から、\(RQ = 0.8 \)の時
\[0.9541 V_0 \leq V \leq 1.05 V_0 \]
(6)
\[RQ = 1.0 \]の時
\[0.9441 V_0 \leq V \leq 1.04 V_0 \]
(7)
式(6), (7)を条件式(2)に代入すると
\[RQ = 0.8 \]の時
\[0.2276 \leq \phi_3 \leq 0.2505 \]
(6′)
\[RQ = 1.0 \]の時
\[0.2202 \leq \phi_3 \leq 0.2426 \]
(7′)
を得る。

したかつて \(O_2 \)に関しては、最も多い \(RQ = 0.8, V \phi_3 = V \phi_2 = 0 \)の条件においてても29%、最も大目にみた \(RQ = 1.0, V \phi_2 = V \phi_3 \phi_4, V \phi_3 = V \phi_3 \phi_4 \)の条件で22%であっても充分と計算できる。

酸素発生実験は、通気開始直後に各 \(V \phi_3 = V \phi_2 = 0 \)の条件に近い、時間の経過についてCO₂, H₂Oともに大量に生成する。それゆえ、\(P_{H_2O} = 42.5 \) (mmHg)または \((CO_2) = 1.0 \)（％）とする時間の中、短い方をとり、この時点で \((O_2) = 23(\%) \)の点と、時間ゼロにおける25％の点を結ぶ直線を引く、酸素濃度曲線と直線で囲まれる部分に対応する時間帯が酸素発生器による直接の感度を示すと考えて、通気開始直後の発生酸素が不十分時間帯では、補助酸素供給装置を併用させるべきえない。両時間帯のスケールが実用上の使用可能時間となる。

4.3 P-KO₂とT-KO₂の反応特性について

触媒添加したものは添加しないものよりも酸素の発生が急速で早く消失し盡くすることをFig. 3 に示している。
KO₂はH₂Oと反応⑴〜(3)を行なうが、元来反応(3)は速く無効であるもので、触媒添加によって容易に右へ進行し、したかつて⑴と⑵の反応も円滑に右に促進されると考えられる。

\[2KO₂ + nH₂O \rightarrow K₂O₂(n - 1)H₂O + H₂O₂ + \frac{3}{2}O_2 \]
(1)

\[K₂O₂ + 2H₂O \rightarrow 2KOH + H₂O₂ \]
(2)

\[H₂O₂ \rightarrow H₂O + \frac{3}{2}O_2 \]
(3)

T-KO₂は酸素発生力、炭酸ガス吸収率共P-KO₂に劣る。反応生成物の所見では、反応が表面のごく薄い層

に止まっていることから、打鍵の際表面密度が高くなるため、H₂O, CO₂の内部への拡散が妨げられるものの推量された。P-KO₂と比べ格段に表面積の少ないことも大きな原因である。

しかし、O₂の発生速度は多い程好ましいというものはなく、必要十分な条件を満たせばよろしいものである。

したがって、T-KO₂も目的によって使用を考慮すべきだと思う。

また、CO₂の発生はO₂の発生が急である。そして通気数分後に特異なO₂発生の停滞が認められた。これはK₂CO₃, KHCO₃がまず新鮮な金粒子表面を被覆し尽し、それまでの吸着反応が別の機構の反応に変わる移動過程を示すものではないかと考えている。

Fig. 4 にP₃H₂O₃すなわち湿度は30ないし80のエース湿度計で測定したものである。CO₂通気では大量のH₂Oが蒸発するのにに対し、H₂O通気ではこれが強く吸着される性質のあることを示している。しかし、O₂の発生はCO₂の場合程良くないのが特徴である。

4.4 G-KO₂の反応特性について

G-KO₂は硬度、密度、造粒の容易性からみて呼吸器用酸素発生剤として最も実用性の高い形態であると考えられ、Fig. 5 から各曲線とも相似的形状を呈することが認められた。

4.4.1 酸素濃度曲線

通気開始1〜5分の間には昇速過程にある酸素発生速度が一時停滞する現象がある、Fig. 3 のCO₂通気曲線と同様にここでも見られた。また、この停滞はあるまで、時間帯はほぼ通気を時間に比例している。

ここでも、最初の数分間の反応機構として、凹凸の多さ新しいKO₂表面がH₂OおよびCO₂に吸着し覆い尽くされるまでの吸着過程であり、これ後は生成物を通過してH₂O, CO₂が拡散侵入してゆっくり機構が支配的になると考えられる。素量が多い程酸素発生は良くなるが無制限である、Fig. 5 から32〜33%否位が限界である。ガス中のH₂O, CO₂が反応最盛期には化学量論的に反応すると考えると以下のガス中の \((O_2) \) は

\[18.9 + 1.5(5.59 + 4.0) = 33.3(\%) \]

と計算されるので、反応後にはほぼ理論的に反応していると看做せらるのではなくだろうか。

薬剤湿度が低い時（Fig. 5 のNo. 3 と No. 4 ）には吸着反応、拡散反応共に穏やかになるが、特に拡散反応における酸素発生時間帯が長く遅延するようになる点に
おいて常温での反応と特徴的に相関する。

Fig. 5 のNo.4、6.6に示すように触媒を加えると酸素発生は良くなるが、これは4.3と同じ理由で説明できる。

連続通気と断続通気を比べると（Fig. 5のNo.5）、初期の酸素発生にはほとんど差が認められないものの、断続通気ではピークがやや低くなる反面、酸素の発生は平均して継続することが認められた。

4.4.2 炭酸ガス濃度曲線

破壊CO₂は通気前半にやや多く、最も反応の活発な中期に低く、その後増加に転ずるという型は共通している。常温以上の発生値を用いると後半のCO₂の増加率は比較的大きい。低温の発生値の浄化力はやや劣るがより長時間吸収力を保つ。

CO₂の許容濃度については、CaOと同様関係が次のようにあるが、短時間（30分以内）の使用には4％を目途としておくと必要ないと考えてよい。

Table 3 の反応10が可逆反応であるため、常温温度の上昇に伴って一度吸収されたCO₂は常温気中のCO₂との平衡関係の下に再度放出される。CO₂を下げるためには酸量を増やすことによって可能となるが、実用上は必ずしも必要ない。

Fig. 6 にKHCO₃の分解圧と温度の関係をNaHCO₃と共に示しておく。

4.4.3 水蒸気圧曲線

水蒸気の破壊数も薬量に一定し、初期薬剤温度が低い程少なくなるのは当然である。

デューサー発生点はゆるやかな変化に対しては精度が高いが、時定数が大きいので、Fig. 5 の湿度曲線において、通気開始後数分間のdP₂/H₂O/Δt < 0 なる現象が真実であるかのまに反映しているかどうか疑わしい。

この種の計器では、露点計ボックス内の初期温度から常温ガス温度まで連続的に低下してゆくのは当然である。Fig. 4 のCO₂通気試験、Fig. 5 のNo.2 - 2、No.4 - 2、No.5 - 2 のようにこの現象が非常に小さいものもある。

通気初期に活性成分がやや破壊やすいことは、多くの吸着剤に見受けられる現象であるが、グラフに見られるように相対的に湿度の高い領域から、急激なP₂/H₂Oをそのまま認めるのはできない。初期を除けばCO₂曲線とはほぼ同じ傾向にあるから、より低レベルから始まってP₂/H₂O < 0 を考えた方がより適切であると考えられる。

CO₂はKOHと反応して強く発熱し（Table 3）、H₂Oは生成し、同時にかなり多くの部分が放出されると考えられるが、Fig. 6 の分解圧曲線はこの点についてもサポートしているであろう。

一般には全く必要されていないが、呼吸のしやすさには湿度は温度との関連で重要な影響があるので、今後の重要な課題になると考えている。

4.4.4 温度

呼吸器の吸収ガス温度は低い方がよい。許容できる温度は湿度と使用時間の関係で異なるが、乾燥しておれば相当な温度まで許される。

脱出用のように短時間型のものではJIS-M-7611に80℃位まで認めており、アメリカのBureau of Minesの規格では25分以内なら57℃まで許容出力（湿度50-100％）をさらに脱出のみを目的とするなら62℃まで許されるとしている。

吸入ガスの温湿度と使用可能時間、その生理的影響については今後検討するべきだろう。

今回の通気試験では、温度は相当高く、このまででは実用に適さないが、実際に呼吸器に組込んだ時には、呼吸袋、結合金具や蛇管で放熱させていので、この点に
関する議論は別報にゆずる。

4.5 酸素発生の規則性

Fig. 3～Fig. 5の酸素発生曲線から定性的な特徴を把握できるが、定量化一般化できれば応用範囲が広まると考えられる。

4.5.1 吸収反応と酸素濃度

酸素発生曲線 Fig. 5 を定量化するため、P_{H2O} [CO₂] の補正を加えた上で、時間 t_{min} までに発生した O₂ の総量 V_t を部分積分法で求め、両対数グラフにプロットしたもののが Fig. 7 である。

Fig. 7 Liberated O₂ volume versus time

酸素発生曲線に認められた停滞域のFig. 7 への影響は小さくて、酸素発生が最高点に達する時点付近までは、非常に良い直線関係が成立した。

この関係は式(8)で示すことができる。

\[V = at^n \] \((8) \)

ここで、a、n は通気条件に応じた定数である。

式(8)から使用開始前半期における系内の [O₂] について推定計算できる。

定常運動時における酸素消費量を C_a/min と、t_{min} 後の呼吸器系内の酸素ガス量を V₀ 、初期に存在した酸素量を V_{0,t} とおくと

\[V = V_0 + at^n - C_a t \] \((9) \)

が成立つ。

故に総酸素量の変化速度 dV/dt は

\[dV/dt = nat^{n-1} - C_a \] \((10) \)

これから、酸素量が最少になる時点 t_{min} は

\[t_{min} = (C_a / na)^{1/n-1} \] \((11) \)

と求まる。

O₂ の初期不足量 ∆V は次式(11)から求まる。

\[\Delta V = V_0 - V = -a(C_a / na)^{n-1} + C_a(C_a / na)^{1/n-1} \] \((11) \)

式(11)、(11)で求めた t_{min}、ΔV の値を a、n と共に Table 4 に示す。

式(8)の関係はどの通気量、薬量に於ても成立するが、a、n の因子を正確に求めるには、さらに多数の実験が必要と考えられる。しかし、Table 4 から a が通気量 f にはほぼ比例するものであることは言えよう。

\[a \propto f \] \((12) \)

4.2 に述べた方法で、呼吸器の使用可能時間はグラフ
から求まるが、初期酸素不足解消の問題は重要であり、使用想定条件に応じた \(\Delta V \) を求め、これを補ってやらねばならない。

気相一固相間の拡散反応については、諸説のモデルを想定して検討中であるので別の機会にゆずる。

4.6 使用可能時間と液量

必要な性能を得るために、各の断面積や高さを任意に大きくすることは制約があるから、相互に最も都合のよい点を見出し塩入ればならない。

Fig. 5 から実験的に求められた時間、ならびに各通気条件下での最小使用液量 \(m_0 \) における使用可能時間 \(t \) から、式(5)のように使用可能時間が液量 \(m \) に比例すると仮定して計算した半理論使用可能時間 \(t \) を Table 5 に示す。

\[
t = t_s \left(\frac{m}{m_0} \right) (f = \text{const})
\]

Table 5 の計算値は、全体的にほぼ実験値に近いと看做することができる。特に酸素発生剤の温度が低い場合には無視比例的である。これは、低温時には反応がゆるやかで、\(H_2O \)、\(CO_2 \)等の活性物質が\(KO_2 \)粒子内部へ拡散するためとみられる。

一方、Table 5 の通気量 \(f \) と使用可能時間 \(t \) を比べてみると、同一液量ではほぼ \(f \) に逆比例していることも明らかとなった。

\[
t = t_s \left(\frac{f/f_0}{f} \right) (m = \text{const})
\]

式(5)と(6)から、想定通気量の中心値 \(f_0 \)，\(f_0 \) に対して、これに近い通気量における \(m \) と \(f \) は次式で一部で表すことができる。

\[
t = t_s \left(\frac{m/m_0}{f/f_0} \right)
\]

Table 5 は式(5)の結果の使用可能時間が、特定の環境温度、液量における一例の通気試験結果から、かなり広範囲にわたる\(f \)、\(m \) の下での使用可能時間を推算する方程式としてよく適用できることを示している。

Table 4

<table>
<thead>
<tr>
<th>Flow rate (\alpha) condition</th>
<th>KO2 used factor</th>
<th>450g</th>
<th>350g</th>
<th>250g</th>
<th>200g</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 t/min (30°C)</td>
<td>(a)</td>
<td>1.62</td>
<td>2.45</td>
<td>2.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(n)</td>
<td>1.42</td>
<td>1.11</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\Delta V(t))</td>
<td>0.18</td>
<td>0.07</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>30 t/min (30°C)</td>
<td>(a)</td>
<td>1.24</td>
<td>1.08</td>
<td>1.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(n)</td>
<td>1.32</td>
<td>1.26</td>
<td>1.24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\Delta V(t))</td>
<td>0.38</td>
<td>0.62</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>10 t/min (30°C)</td>
<td>(a)</td>
<td>0.31</td>
<td>0.33</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(n)</td>
<td>1.30</td>
<td>1.26</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\Delta V(t))</td>
<td>0.98</td>
<td>0.84</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>30 t/min (0°C)</td>
<td>(a)</td>
<td>0.64</td>
<td>0.75</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(n)</td>
<td>1.55</td>
<td>1.36</td>
<td>1.35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\Delta V(t))</td>
<td>1.40</td>
<td>1.51</td>
<td>2.40</td>
<td></td>
</tr>
<tr>
<td>30 t/min (0°C, catalysed)</td>
<td>(a)</td>
<td>0.79</td>
<td>0.67</td>
<td>1.80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(n)</td>
<td>1.54</td>
<td>0.67</td>
<td>1.80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\Delta V(t))</td>
<td>0.96</td>
<td>0.67</td>
<td>1.80</td>
<td></td>
</tr>
</tbody>
</table>

- 44 -
Table 5 Time (minutes) required to attain each breathable oxygen concentration

<table>
<thead>
<tr>
<th>KO2 used</th>
<th>200g</th>
<th>250g</th>
<th>250g</th>
<th>250g</th>
<th>250g</th>
<th>250g</th>
<th>250g</th>
<th>250g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vol O2%</td>
<td>23</td>
<td>27</td>
<td>25</td>
<td>23</td>
<td>27</td>
<td>25</td>
<td>23</td>
<td>25</td>
</tr>
<tr>
<td>10 l/min, E</td>
<td>37.5</td>
<td>47.5</td>
<td>56</td>
<td>54</td>
<td>62.5</td>
<td>72</td>
<td>62.5</td>
<td>70</td>
</tr>
<tr>
<td>(30°C), C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52.5</td>
<td>66.5</td>
<td>78.4</td>
<td></td>
</tr>
</tbody>
</table>
| 30 l/min,
(30°C), E | 11.5 | 20.8 | 12* | 19.2 | 24.5 | 29.1 | 16.8*| 20.0 | 24.9 |
| (26.9%) C | | | | | 16.1 | 15.4 | | | |
| 50 l/min, E | 11.0 | 8.5* | 16.0 | 24.9 | 13.2*| 10.9 | | | |
| (30°C), C | | | | | 15.4 | | | | |
| 30 l/min, E | 19.4 | 20.2 | 27 | 27.2 | 26.3 | 26.0 | 26.8 | 26.6 | 34.8 |
| (0°C, Catalysed), C | 18.8 | 12.0* | 17.5 | 22.8 | 23.5 | | 23.8*| 21.6*| 32.2 |
| | (26.5%) | | | | | | | | |

Note 1) * mark shows the oxygen concentration in parenthesis, a little deviating from the belongings.
2) E means experimentally obtained duration time (min) and C means calculated one according to equation (13).

係なく、薬量によって使用可能時間を決定できることを示すものであり、酸素発生缶の設計に好都合な条件を提供している。

しかし当然に、薬粒の直径に対し缶の直径があまりに近接するような極限的条件下では、缶壁と薬粒の接触部の空隙を無効に流れる率が高くなるので、この方程式は適用できないだろう。

次に酸素発生 asymptoteの粒径とtの関係を考慮する。m, mr に対し同一通気量で同一使用可能時間を示す粒径rのものの必要薬量をmとすると、使用可能時間は第一次には薬剤の全表面積Sに比例すると考えることができる。何故ならt=0 (Sを個々の粒子表面積の総和すると)、m∞Sだからt∞Sとなるからである。

すなわち

\[m = m_r \rho_r kr_r \] \hspace{2cm} (13)

式(9)と(10)から

\[m/m_r = n r_r^2 / n_r r_r^2 = r / r_r \]

すなわち

\[m_r = m_r r \] \hspace{2cm} (14)

式(10)を粒径の関数として表わすためには、mの項 (ここでは粒径mr) を粒径rのものを使用した時の相当換算重量mに転換せねばならない。

つまり式(12)から

\[m_r = m_r r \]

式(13)から

\[t = t \left(m_r / m_r \right) \left(r / r_r \right) \]

となるから、前式と合わせ

\[t = t_r \left(r / r_r \right) \left(m_r / m_r \right) \left(f / f_r \right) \] \hspace{2cm} (14)

がえられる。式(14)は実用上重要な意味をもつ。

ただ、粒子が余りに小さいと抵抗増加等他の面の不都合が強調されてくるので、自然に制約があり、大略r_rに近い場合に限定すべきと考えられる。

4.7 粒径について

使用酸素の反応面積を考慮すると、経済的な粒径は次のように計算できた。

実験的にTable 2 の使用可能時間が終了した時点で発生剤を分析したところ、有効酸素の70%位が消費されていることがわかった。
浸透層中のKO₂は総て分解し尽くしていると仮定し、
反応効率をω、体積の比例定数をkとおくと
\[\omega = k (r_0 - r)^3 / k r_0^3 \]

但し、\(r_0 \)、\(r \)は反応前、反応後の粒子の代表半径とする。

よって
\[r / r_0 = (1 - \omega)^{1/3} \]

\[\omega = 0.7 \]を代入して
\[r_0 - r = 0.33 \text{(cm)} \]

すなわち直角が0.66cm（3.85メッシュ）までは必要な酸素発生速度が期待できる。実際には浸透層中のKO₂が総て理想的に分解し尽くしているわけではないの
でう少し大きい粒径のものでも効果的に使用できると考えられる。

5. まとめ

超酸化カリウム方式の酸素呼吸器を開発するための
基礎資料とするため、多孔質KO₂、打鍼KO₂、グラニュールKO₂の各種に呼気ガスを通じた時、ならびに、
P-KO₂にCO₂-Air、H₂O-Air系のガスを通じ各反応成
分単独での反応性を調べた。

その結果、KOHを含有するKO₂は乾燥したCO₂-Air
系のガスともきわめて掲発に反応し、多量のO₂および
H₂Oを放出するのに対し、H₂O-Air系のガスではH₂O
が強く吸着されるにもかかわらず、無触媒の時の反応
速度は緩慢で余り迅速にO₂を放出しないことがわかっ
た。

P-KO₂は呼気に対して最も良く反応し、G-KO₂はこ
れに次ぎ、T-KO₂では見るべき反応をしない。

そして粒の充てん密度、振動に対する崩壊抵抗力等の
実用性を考慮し、G-KO₂が最も呼吸器の目的に適し
ていると判断された。

G-KO₂については特に詳細に一連の通気実験を行い、
次のような特徴を見出した。

1. 通気開始数分後に、酸素発生速度が停滞する区
域が認められる。
2. これ抑制域が生ずる主因はCO₂に負うと考えら
れる。
3. 酸素発生速度が最大に達する時点付近までの反
応は、主として吸着反応によると考えられる。
4. 同上時点以後の反応は、拡散律反応と考えら
れる。

また、初期の吸着反応過程ではO₂の発生量vは
\[v = at^n \]

v: 時間tまでに発生するO₂の総量
a、n: 薬剤の物性量、温度、通気量に支配される定
数
でよく示せられることがかった。

この方程式から、酸素吸収器吸着時の前半期におけ
る系内の酸素濃度、および実用上極めて重要な意味を
有する初期の酸素不足率が算出できる設計の資料となる。
一方、粒径r、薬量mのKO₂粒を使用した場合と同
一の使用時間を基とする粒径r、薬量mのものとの間には
\[m r = m_r \]

の関係のほか成立することが理論的に導出された。こ
れと通気実験結果から、呼吸器の使用可能時間tは、
基本となる一連の通気条件t、r、m、f、から他の条
件t、r、m、fと次式で良く関係付けられ、この式は特
に酸素発生剤が常温以下の時に精度良く適用できるこ
とが判明した。

\[t = t_0 (r_0 / r) (m / m_0) (f_0 / f) \]

また、CO₂の除去には、生成する重酸カリウムが
発生温度で酸素の高い分圧有し、かつ呼気のしあ
すきと密接に関係のある水蒸気も同じ分解で発生する
ことから、薬量を増やさない限り両者の除去に限界の
あることが判明した。

引用文献
1) Robert M. Bovard, Oxygen Sources for Space Flights, Aerospace Medicine, P408, May 1960
3) MSA Research Corporation, Exploratory Study of Potassium and Sodium Superoxide for Oxygen Control in Manned Space Vehicles, Final Report to NASA, contract NASW-90, MSAR Job No. XA720208
4) P.D. Newberry, J.R. Smiley and W.R. Franks, Failure to Demonstrate an Influence on Vigilance Degradation by Breathing Gas Mixtures Containing Increased Oxygen Concentration and 4.5% CO₂, Aerospace Medicine, P1345–1348, December 1965

- 46 -
Development of an Oxygen-Generating Breathing Apparatus
— I. The Reactive Characteristics of Potassium Superoxide Mainly with Exhaled Breath —

(Abstract)

Satoshi Takahashi

(Received December 11, 1975)

Prior to the development of a new oxygen mask, some experiments were performed to determine the reactive characteristics of porous-KO₂ (P-KO₂), tableted-KO₂ (T-KO₂) and granular-KO₂ (G-KO₂, produced by pressing P-KO₂ under pressure of 120 - 150 kg/cm² and crushing). The experiments were conducted by passing H₂O-free CO₂-Air, CO₂-free H₂O-Air and composed exhaled breath over each of the three forms of KO₂.

P-KO₂ absorbs H₂O remarkably well but didn’t liberate O₂ smoothly without a catalyst.

In the case of CO₂-Air, the absorbance of CO₂ was not so remarkable but a large concentration of O₂ could be generated without a catalyst (Fig. 4). This was the unique properties of this KO₂ which contain about 20% of KOH.

The reactivity of T-KO₂ was weak, and G-KO₂ was thought to have the most practical properties. The tests were, therefore, focussed mainly on granular KO₂ and the following new informations were obtained:

1. A few minutes after passing test gas, a stagnation phenomenon of O₂ liberation was observed.
2. A principal cause of this stagnation was recognized to originate from the existence of CO₂.
3. The first period until the oxygen liberation velocity reached a maximum the reaction mechanism was thought to depend mainly on an adsorption reaction.
4. The reaction mechanism of the latter half period was thought to be a diffusion reaction.

The volume of O₂ liberated in the first period was found to be expressed by the following equation:

\[v = at^n \]

where \(v \) is the volume O₂ generated until testing time \(t \), \(a \) and \(n \) are the condition constants which depend on the physical properties of granules, atmosphere temperature, flow rate, etc.

From this equation, the O₂ concentration in the mask and the volume of deficient O₂ with respect to time was calculated. This was very important for designing, especially for designing a supplementary O₂ supply device.

The equivalent weight \(m \) of KO₂ granules of diameter \(r \), which showed the same duration time with the one representing condition of \(m_0 \) and \(r_0 \), was theoretically derived as,
\[m_0 r = m r_0 \]

From the flow test experiment, the duration time \(t \) was found to have the following relation with the one fundamental flow test as:

\[t = t_0 \left(\frac{m}{m_0} \right) \left(\frac{f_0}{f} \right) \]

where \(f \) is the flow rate.
By combining the two equations,

\[t = t_0 \left(\frac{r_0}{r} \right) \left(\frac{m}{m_0} \right) \left(\frac{f_0}{f} \right) \]

was obtained.
These equations can be applied especially when the canister temperature is below normal.
酸素発生式呼吸器の開発研究(2)
——避難救命酸素呼吸器の開発と性能——

高橋 喫

昭和50年12月11日受理

1. はじめに
　前報の基礎実験を通じ、呼吸器の開発に必要な酸素の発生方法に関しては充分に見通しがたったが、本稿にはその目的である呼吸器本体の設計開発について述べる。
　基本構想は同じでも、構造には多くの手法が考えられるので、当面よいと考えられるものを次々に試作しながら実験を繰返し、機能的に完成したものは想定される
　使用条件下に装置実験を施し、さらに製作、保管および使用上の現実的要求につき合わせながら、再度設計に還元して改良を行った。
　ここでは、酸素発生式呼吸器として、まず脱出用のものを開発したのでこれについて述べる。

2. 避難救命呼吸器
　煙死あるいは煙中毒とされているものを検討してみるに、その多くは、避難路を断たれ脱出方法を模索している間に、救出隊の手が届く以前に事故に至った例が多いえ
　したがって、この種の呼吸保護具に要求される性能・第一義的に被災者が待機し、救出されるまで充分な使用可能時間に挙げべきであると考え、脱出必要時間を基準としない。
　そして必要待機時間は、消防力を考慮すると救出開始までに最低5分は見込まればならず、かつ多くの救出例が火災起因後10〜20分の間に集中している事実から、20分位は必要だと考えている。
　呼吸器の型式としては、酸素発生方式の外に空気方式、酸素発生方式が一般的であるが、それぞれに一長一短があり、使用可能時間と重量、大きさの観点からみて、ここに述べる酸素発生方式が最良であると考えている。
　一方、この種の小型、軽量の呼吸器は単に火災時の避難、脱出の目的ばかりでなく、地下工事の事故、工場災害および鉱山用としても適用できるものと考えられる。

3. 設計
　既述のように、以下に述べられるものが究極的完成品と
　はなりえないだろうが、性能設定に関する構想を固め
　た上で機構的にこれを具体化してゆくのが筋である。
　性能に関する構想や、主要な構造はほぼ完成している
　ので、後の改良はこれを踏台にして行なえる。

　3.1 性能の設定
　呼吸器の性能として、使用の容易さ、重量、大きさ、
　呼吸のし易さ、着着感、保険性、価格、使用可能時間等
　多方面からの検討が必要であるが、重量や大きさに
　ついては絶対の必要条件として限界を定めるには無理
　があるし、使い易さおよびその器具性能の理解のし易さは最重要だとする見方もあるが、それにはそれを取
　扱う人の側の問題が入ってきて善く論じ難い。そこで
　今回は、それ等の事を基調に置きつつ、機器としての
　性能、特にその使用可能時間と装着感に焦点を絞って
　論することにする。
　労作量と酸素摂取量
　火災に遭遇した人の生理的状態、労作量の度合い等
　についてはは知ることができない。したがって、性能を
設定するに際し、酸素の必要供給量の基準をどこにおけばよいか決定することは困難である。
この作業量について考察してみると、健の歩いて歩行するには視界を妨げられること、建物内の歩行であることから歩行速度は大幅に制約されるに違い無い。
心理的要因から呼吸回数が異常に早まることはあっても、酸素消費量は肉体の作業量に比例するので、その割合に増加せず、又酸素摂取量そのものにも限界があるものである。そこで、一般的に正常な運動条件下での運動種別に応じた作業量についてはよく知られているので、これから火災下での酸素摂取量について推測することとし、Fig. 1 に作業量と換気量、酸素摂取量、ならびに血液の酸素飽和度がその温度や PH と酸素分圧 Po2 (mmHg) との関係でどのように変わるかを示すする。
さて避難行為では、平地部の歩行と階段の登降が考えられるが、既述のように待機行為に、より重点をおいて設計するとすれば、階段登降のように強度の労働にのみ条件を合わせる必要はなく、平地の歩行との中間位の作業量を想定すればよいと考えられるが、階段室の昇降では平地避難での歩行も無視できない。
安全率を見込む意味も含めて、平均的人間が降段を昇降するのに不都合を感じない程度の酸素摂取量を標準として設計すればよいと考える。

これは勿論、設計上必要な中心値を与えるにすぎないから、個人差あるいは使用条件によって、さらに大きな作動量に見合う酸素供給を無視するものではない。肺換気量（これが大きい時には酸素摂取率とは比例しない）や瞬間呼吸速度（平均呼吸速度の約3倍）の見地からも、機種の特性に応じて別個の配慮をする必要がある。

さて標準酸素摂取量はFig.1から速歩と登降の中間1.7ℓ/minが適当と思われ、対応する肺換気量は40l/min、労作量は600kg・m/minである。

激務と看做されるRMR=7.0(酸素摂取率1.3ℓ/min)での持続的作業の限界は10〜20分といわれているので、1.7ℓ/minは一般的には充分余裕があると看做してよいと思う。

3.2 構造

呼吸器の全体構図をFig.2に、その写真も装置と共にPhoto.1に並べて示す。

Photo 1. Developed O₂ Self-Rescuer

A: Old type, this was used for all tests in this paper.

B: New type

C: All parts used for this mask is demonstrated.

Fig.2 Scheme of return type emergency self-rescuer
Fig. 2のように、吸気を再度、酸素発生缶を通して吸入する方式のものを筆者は循環式に対して往復式とよぶことにする。

最も工夫を必要とする酸素発生缶の詳細図をFig. 3 Photo.2に示す。

![Fig. 3 O₃ Liberating Canister](image)

Fig. 3のプッシュヘッドは、ゴム製弾性球によってカッターとプッシュロッドと共に押上げられている。弾性球には金属製保護カバーをかぶせ、保存中に降下するような事故を防ぐ。

小型酸素ボンベは初期に不足する酸素および同時に呼吸圧迫をひき起こす原因となるガス不足を補う目的で併用する。その図と写真をそれぞれFig. 4、Photo.3に示す。

Photo.1のAおよびBの仕様はTable 1のとおりである。
Table 1 Specifications of the trial developed mask

<table>
<thead>
<tr>
<th>Specifications</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Weight (g)</td>
<td>1850</td>
<td>1865</td>
</tr>
<tr>
<td>Chemicals used (g)</td>
<td>180</td>
<td>200</td>
</tr>
<tr>
<td>Starter O₂ Volume (L)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Canister Weight (g)</td>
<td>1050</td>
<td>1075</td>
</tr>
<tr>
<td>Size, Length x Width x Height (mm)</td>
<td>60x125x120</td>
<td>60x125x120</td>
</tr>
<tr>
<td>Dead Space (mL)</td>
<td>400</td>
<td>250</td>
</tr>
<tr>
<td>Breathing Bag Volume (L)</td>
<td>10</td>
<td>15</td>
</tr>
</tbody>
</table>

Remarks: Old type A
New type B
Starter is a Supplementary O₂ Supply device, a O₂ cylinder of a capacity 20 mL (150 atm).
4. 実験方法

Photo.1 の A 型式の呼吸器について装着試験を行った。

試験は気温 32°C の条件下に、一辺 40 m の平田地を往復する歩行テスト、及び低温下での使用も考慮し -2°C ～ 0°C に保たれた低温実験室（幅 12.7 m、高さ 4.5 m）内での歩行試験ならびに Fig. 5 に示す階段室の昇降テストとした。

低温試験では供気呼吸器の全体を前日に低温室内に格納し、その温度に順化させて使用した。

呼吸袋中の酸素濃度、炭酸ガス濃度の測定にはベッックマン酸素濃度計、ガスクロマトグラフ、検知管を必要に応じて用いた。

吸入ガス温度（蛇管中央上部）、呼吸袋中のガス温度、酸素発生缶表面温度はクロメル・アルメル熱電対で、呼吸回数は熱電対に表われるガス温度の脈動から数えた。脈搏はテレメータ装置で測定した。

酸素発生缶の通気抵抗は、試験直接に 40 l/min の流速で空気を流して測定した。

そして、直ちにこの発生缶を水中に投じ、発生する残留活性酸素をガス貯存に入れて計り、同時に流出するアルカリ水溶液を滴定して吸収された CO2 の量を求めた。

また、計器を取付けないで 12 階の階段室を自由に昇降させた時のダイアグラムを作成し、かつ装着感を調べた。

Fig. 5 Scheme of the Staircase Room
This training tower has 12 floors and 4 floors were used for measurement tests, all floors were used for free climbing tests.

5. 設計結果と考察

5.1 平地歩行および階段室昇降試験

気温 32°C および約 1°C の下で歩行テストを行った時の代表例を Fig. 6、Fig. 7 に、そして同様に行った他の実験例を含めて測定された諸結果を Table 2 に一括して示す。

Fig. 5 の階段室の昇降試験結果は Fig. 8、Table 3 に示す。

Fig. 6、Fig. 7、Fig. 8 にみられるように脈搏、呼吸回数が実験開始後数分間増加するが、中期には低下し、末期に再び增加に転ずる傾向はいずれにも共通している。

脈搏には個人差や心理的影響が大きく表われ、普段 70 前後の人が、マスクを着用しただけですでに 100 を越す事が多い。

呼吸数にも同様の影響があるとみられるが、炭酸ガス濃度の変化と対比させるとみると、いずれも完全に比例的であり、前報の炭酸ガス濃度の推移とも一致する。したがって、呼吸のし易さと関係ある湿度 P_H2O にも比例的である。

酸素ガス濃度の増大が呼気数を増加させ、酸素濃度の増加はこれを減少させることはよく知られている事実なので、中期の呼吸数の減少は炭酸ガス濃度の減少、酸素濃度の増大、湿度の減少と密接関連に対応していると考えられる。

Table 2、Table 3 の呼気数、脈搏数とも運動状態にあるものとしては正常で問題はない。

5.2 呼吸帯と面体

呼吸帯もできるだけ小さくした方が収納容器が小さくなるし、装着にも便利になると考えるためもあるが、実際に装着してみればほど問題になる事ではない。
Table 1 の A は 101, B は 151 としたが, これは次の理由による。
すなわち呼吸袋が小さいと, やがて過剰に発生されるに至る O₂が袋を満たすため, 呼気抵抗が高くなり呼吸を圧迫する。そこで排出弁（過圧弁）を取付ける事が考えられるが, 簡易を旨とする脱出用のものでは, 経済的観点からもできるだけ避けたいし, O₂を排出してしまう事はその分だけ使用可能時間を短かくすることにつながる。したがって, 改良型の B では, 想定使用条件下で減杯とならない程度に容量を極力大きくした。
一方, 面体は全面型とするか半面型または口片型がよいか選択に苦慮するところである。
筆者等が, 木材, ゴム, 軟質塩化ビニール, 発泡スチレン, ウレタンについて発煙燃焼させ行った実験では, 木材は目に対する刺激性は最も強く, 他方呼吸に対する刺激はゴム, 塩化ビニール, 発泡スチレン等が強い。
目への刺激には極端に個人差があるが, しかしいずれも数分間耐えれば慣れて軽快すること, 他方呼吸の方は発一の火がある程度に達すると一呼吸たりとも吸入できぬ性質のものであることがわかった。
この結果から, 目の保護もできるなら行った方がよいだろうが, 全面型は気中の水分や温度差によって変りやすく, 煙そのものと相まって視界を妨げる恐れが多い。またこの種の呼吸器は簡易を旨とする非常用のものでもあることから, 半面または口片型がよいと考えられる。
5.3 酸素濃度と初期酸素の補給

使用開始後数分間の酸素不足は補助装置で補ってやらねばならない。方法としては小型酸素ボンベを用いる方法と、化学薬剤で発生させる方法が考えられる。

化学式では酸素発生缶の中にKO₃を入れた小缶を納め、これにアンプルから水を滴下する方法が考えられた。しかしアンプルでは保存中にヒビ割れる事が考えられるが、重力式であるため、体の姿勢によっては発生しないことが考えられる。

これ等の点に関してはボンベを用いた方が確実と考えられるが、ただこの方式ではボンベの開封と、酸素発生缶の開封が別動作となり、操作の容易さ迅速さの面でやや劣るかもしれない。

5.4 温度

吸入ガスの温度はTable 2, Table 3 にみられるように使用時間内に於て盛夏でも50℃以下に納まってい る。発生缶上部の開封機構の金具および蛇管で放熱冷却させる結果であり、温度そのものは短時間型であるので害にならないが、装着感は温度を抜きにして考えられない。使用後半期には前報にみられるように鈍和に近くなっており、 Saidもしくは装着感が夏季条件の下では多い。冬季の条件下では、Table 2 の吸入温度にみられるようにむしろ爽快に感じられる程である。

酸素発生缶の外表面温度は、盛夏には100℃位まで
Table 2 Results of walking tests

The tests under ambient temperature 32°C were carried out in the outdoor yard by returning 40m oneway distance foward and back, and the supposed winter tests were carried out in a big refrigerator (12.7m x 4.5m) kept at the temperature -2 ~ 0°C and all apparatuses were layed into it beforehand overnight.

<table>
<thead>
<tr>
<th>Examiner No.</th>
<th>1</th>
<th>4</th>
<th>5</th>
<th>7</th>
<th>1</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test condition</td>
<td>Weight (kg)</td>
<td>63</td>
<td>74</td>
<td>58</td>
<td>62</td>
<td>63</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Height (cm)</td>
<td>169</td>
<td>168</td>
<td>163</td>
<td>170</td>
<td>169</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>Vital Capacity (l)</td>
<td>5.1</td>
<td>4.4</td>
<td>3.2</td>
<td>3.8</td>
<td>5.1</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>Age (years)</td>
<td>30</td>
<td>30</td>
<td>40</td>
<td>25</td>
<td>30</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Duration time (minutes)</td>
<td>21</td>
<td>15.3</td>
<td>19.5</td>
<td>19</td>
<td>26.1</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Walked time (minutes)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>19.7</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Corrected walked time (minutes)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>22.9</td>
<td>22.5</td>
</tr>
<tr>
<td></td>
<td>Walked distance (m)</td>
<td>1680</td>
<td>1280</td>
<td>1600</td>
<td>1600</td>
<td>1448</td>
<td>1499</td>
</tr>
<tr>
<td></td>
<td>Corrected walked distance (m)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1685</td>
<td>1775</td>
</tr>
<tr>
<td></td>
<td>Average walking velocity (m/min)</td>
<td>80.0</td>
<td>83.9</td>
<td>82.1</td>
<td>84.2</td>
<td>73.6</td>
<td>78.9</td>
</tr>
<tr>
<td></td>
<td>CO₂ absorbed (l, at 0°C)</td>
<td>21.3</td>
<td>17.1</td>
<td>17.5</td>
<td>19</td>
<td>21.0</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td>O₂ remained (l, at 20°C)</td>
<td>1.5</td>
<td>5.0</td>
<td>5.5</td>
<td>1.0</td>
<td>12.5</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>Average O₂-Intake (l/min at 0°C)</td>
<td>1.1</td>
<td>1.2</td>
<td>1.0</td>
<td>1.1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Flow resistance after (mm Hg at 40/min)</td>
<td>17</td>
<td>17</td>
<td>15.5</td>
<td>20</td>
<td>6.0</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>[O₂] min</td>
<td>52</td>
<td>55</td>
<td>55</td>
<td>58</td>
<td>45</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>t min</td>
<td>3.6</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0.4</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>[O₂] max</td>
<td>80</td>
<td>71</td>
<td>73</td>
<td>76</td>
<td>52</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>t max</td>
<td>14</td>
<td>10</td>
<td>13</td>
<td>14</td>
<td>17</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>[CO₂] max</td>
<td>6</td>
<td>4.5</td>
<td>4.6</td>
<td>3.5</td>
<td>8.6</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>t max</td>
<td>19</td>
<td>2.5</td>
<td>4</td>
<td>16</td>
<td>25</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Inhalation gas</td>
<td>39</td>
<td>39</td>
<td>41</td>
<td>46</td>
<td>26</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>t max</td>
<td>15</td>
<td>15.3</td>
<td>16</td>
<td>11</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>In Breathing bag</td>
<td>39</td>
<td>42</td>
<td>–</td>
<td>42</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>t max</td>
<td>15</td>
<td>15.3</td>
<td>–</td>
<td>19</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Canister surface</td>
<td>–</td>
<td>–</td>
<td>86</td>
<td>–</td>
<td>52</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>t max</td>
<td>–</td>
<td>–</td>
<td>19.5</td>
<td>–</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Respiratory Rate (min⁻¹)</td>
<td>maximum</td>
<td>20</td>
<td>35</td>
<td>29</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>minimum</td>
<td>21</td>
<td>15.3</td>
<td>8</td>
<td>19</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Pulse beat (min⁻¹)</td>
<td>maximum</td>
<td>126</td>
<td>153</td>
<td>159</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>minimum</td>
<td>16</td>
<td>15</td>
<td>15</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Remarks: 1) Corrected walked time = (Duration time + Walked time) / 2
2) Walked distance and walked time should be lengthened a little because the examiner paused a few minutes to have the CO₂ concentration checked, especially in the case of the winter tests, sampling process took longer time to the extent not disregarded, so the corrected walked distance and Average O₂-Intake were calculated from corrected time.
3) Average O₂-Intake = CO₂ absorbed / (corrected) walked time × Respiratory Quotient (0.9 was employed)
Table 3 Results of climbing tests
4 Floors was used of the staircase room of the structure shown in Fig. 5

<table>
<thead>
<tr>
<th>Examiner No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (kg)</td>
<td>63</td>
<td>60</td>
<td>60</td>
<td>74</td>
<td>58</td>
<td>60</td>
<td>62</td>
<td>50</td>
<td>57</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>169</td>
<td>170</td>
<td>176</td>
<td>168</td>
<td>163</td>
<td>162</td>
<td>170</td>
<td>164</td>
<td>165</td>
</tr>
<tr>
<td>Vital Capacity(l)</td>
<td>5.1</td>
<td>4.1</td>
<td>3.8</td>
<td>4.4</td>
<td>3.2</td>
<td>4.0</td>
<td>3.8</td>
<td>3.2</td>
<td>3.7</td>
</tr>
<tr>
<td>Age (years)</td>
<td>30</td>
<td>27</td>
<td>26</td>
<td>30</td>
<td>40</td>
<td>36</td>
<td>25</td>
<td>36</td>
<td>22</td>
</tr>
<tr>
<td>Walked time (minutes)</td>
<td>12</td>
<td>13</td>
<td>12</td>
<td>9.7</td>
<td>7</td>
<td>9.5</td>
<td>12</td>
<td>10.3</td>
<td>10.3</td>
</tr>
<tr>
<td>Walked distance (m)</td>
<td>600</td>
<td>600</td>
<td>515</td>
<td>429</td>
<td>429</td>
<td>515</td>
<td>429</td>
<td>515</td>
<td>343</td>
</tr>
<tr>
<td>Average walking velocity (m/min)</td>
<td>0.83</td>
<td>0.77</td>
<td>0.72</td>
<td>0.73</td>
<td>1.02</td>
<td>0.90</td>
<td>0.60</td>
<td>0.84</td>
<td>0.56</td>
</tr>
<tr>
<td>CO₂ absorbed (l, at 0°C)</td>
<td>17.2</td>
<td>19.2</td>
<td>16.1</td>
<td>17.2</td>
<td>13.6</td>
<td>16.5</td>
<td>17.7</td>
<td>14.1</td>
<td>11.5</td>
</tr>
<tr>
<td>O₂ remained (l, at 20°C)</td>
<td>1.0</td>
<td>1.5</td>
<td>5.0</td>
<td>4.0</td>
<td>9.2</td>
<td>5.5</td>
<td>2.0</td>
<td>8.5</td>
<td>15.5</td>
</tr>
<tr>
<td>Average O₂ Intake (l/min at 0°C)</td>
<td>1.6</td>
<td>1.6</td>
<td>1.5</td>
<td>2.0</td>
<td>2.2</td>
<td>1.9</td>
<td>1.6</td>
<td>1.5</td>
<td>1.2</td>
</tr>
<tr>
<td>Flow resistance after (mm Hg at 40°/min)</td>
<td>8</td>
<td>19</td>
<td>18</td>
<td>20</td>
<td>17</td>
<td>15</td>
<td>17</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>[O₂] min and its time (min)</td>
<td>31</td>
<td>38</td>
<td>53</td>
<td>56</td>
<td>48</td>
<td>54</td>
<td>44</td>
<td>50</td>
<td>52</td>
</tr>
<tr>
<td>t min</td>
<td>2.1</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1.5</td>
<td>3.5</td>
<td>3</td>
<td>3.5</td>
<td>4</td>
</tr>
<tr>
<td>[O₂] max and its time (min)</td>
<td>68</td>
<td>65</td>
<td>69</td>
<td>61</td>
<td>50</td>
<td>58</td>
<td>68</td>
<td>70</td>
<td>56</td>
</tr>
<tr>
<td>t max</td>
<td>7.5</td>
<td>8</td>
<td>9</td>
<td>5</td>
<td>4</td>
<td>9</td>
<td>8.5</td>
<td>7.5</td>
<td>7</td>
</tr>
<tr>
<td>[CO₂] max and its time (min)</td>
<td>2.8</td>
<td>1.8</td>
<td>3</td>
<td>2.6</td>
<td>3.7</td>
<td>2.5</td>
<td>2.8</td>
<td>2.7</td>
<td>2.1</td>
</tr>
<tr>
<td>t max</td>
<td>12</td>
<td>11</td>
<td>9</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>9.5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Inhalation gas and its time (min)</td>
<td>52</td>
<td>47</td>
<td>47</td>
<td>44</td>
<td>–</td>
<td>46</td>
<td>49</td>
<td>–</td>
<td>41</td>
</tr>
<tr>
<td>t max</td>
<td>11</td>
<td>10</td>
<td>8</td>
<td>4.5</td>
<td>–</td>
<td>9</td>
<td>12</td>
<td>–</td>
<td>10</td>
</tr>
<tr>
<td>Maximum temperature and its time (min)</td>
<td>32</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>38</td>
</tr>
<tr>
<td>t max</td>
<td>12</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>10</td>
</tr>
<tr>
<td>Canister surface and its time (min)</td>
<td>–</td>
<td>86</td>
<td>100</td>
<td>114</td>
<td>84</td>
<td>94</td>
<td>97</td>
<td>75</td>
<td>–</td>
</tr>
<tr>
<td>t max</td>
<td>–</td>
<td>10</td>
<td>8</td>
<td>10</td>
<td>7</td>
<td>9</td>
<td>12</td>
<td>10</td>
<td>–</td>
</tr>
<tr>
<td>Respiratory Rate and its time (min⁻¹)</td>
<td>maximum</td>
<td>25</td>
<td>36</td>
<td>33</td>
<td>38</td>
<td>–</td>
<td>31</td>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td>minimum</td>
<td>16</td>
<td>33</td>
<td>29</td>
<td>33</td>
<td>–</td>
<td>26</td>
<td>26</td>
<td>32</td>
<td>25</td>
</tr>
<tr>
<td>Pulse Beat and its time (min⁻¹)</td>
<td>maximum</td>
<td>180</td>
<td>175</td>
<td>165</td>
<td>180</td>
<td>160</td>
<td>180</td>
<td>180</td>
<td>165</td>
</tr>
<tr>
<td>minimum</td>
<td>145</td>
<td>165</td>
<td>160</td>
<td>150</td>
<td>130</td>
<td>145</td>
<td>145</td>
<td>131</td>
<td>100</td>
</tr>
</tbody>
</table>

Remarks: 1) Under ambient temperature 32°C.
2) Average O₂ Intake = CO₂ absorbed / walked time × Respiratory Quotient (0.9 was employed)
3) Walked distance should be lengthened and walked time should be shortened a little because the
 examiner paused a few minutes to have the CO₂ concentration checked.
5. 自由昇降試験

すべての計器を用いないで自由に昇降した時の被着感をみるため、Fig. 5 の階段室の12フロアを利用した試験を行った。その結果、昇降速度および垂直歩行距離と所要時間の関係をダグラムにしたもののがFig. 9 である。

同様に、D は B と同一人が、重量12kgの空気呼吸器を背負って試験した結果である。使用空気量は65lであったので、約65l/minの肺換気量となり、重量が大きいため歩行速度の著しく遅くなることが認められた。

酸素呼吸器の時には重量感は全く問題にならなかったが、Table 2, Table 3 からわかるように暑い環境下での使用後期の著しくさし、呼気および吸気抵抗を感ずる点が、やはりこの呼吸器に対する問題点であると考えられる。

Table 2 で、冷暖な環境中では吸入ガス温度、通気抵抗共に良好な値を示しており、試験結果中全く異和感を感じなかった。

空気呼吸器使用時の肺換気量65l/minは酸素消費率に換算すると2.8l/min位であり、これは人の最大酸素消費に相当する値であって、恐らくは相当の過換気があるとみられる。このような観点からみれば、軽量な呼吸器は、やはり酸素効率がすぐれているといえる。

Table 2, Table 3 から階段室の昇降では平均1.68 l/min, 平地分歩で1.1 l/minの酸素消費率が得られたが、本稿で安全を見込んだ中心値として1.7l/min, 肺換気量40l/minを想定した理由の一つはここにある。
12フロアの高層建物を2往復、建物内の歩行を約500m行なえる性能であれば、一応満足できるものではなかろうか。

Fig. 9 Diagram of free climbing tests

\[\begin{array}{ccc}
\text{・ men} & \text{○ Woman} & \text{O}_2\text{-Self Rescuer} \\
\text{△ man: Air Pack (12kg weight, 5l capacity) was used, and 650l of Air was consumed; the same person with •.} \\
\end{array} \]

6. まとめ

酸素発生式呼吸器として短時間型の避難救命呼吸器の基本的開発を行った。

開発に先立ち、要求性能の第一要件として使用可能時間が重要と考えられたので、火災に遭遇した人の活動標準換気量を40l/minと想定し、これを基に設計した。そしてこの条件に下20分間使用できることを望まれるという結論が火災の実例と防災力を考慮することによって出された。

この避難救命呼吸器には酸素発生剤としてKOP2粒を100g使用したが、使用初期の数分間は酸素の発生が消費に追いつかないことが明らかになっているので、20mlの補助酸素ポンベを併用し、3lの酸素を使用直前に補給することにした。

この装置で平地歩行、階段室の昇降試験を行い、平地歩行条件で20分（約1600m）、階段室昇降で10分（25階建てのビルを一往復）間使用できるものが完成した。別に－1℃の寒冷下での平地歩行試験も行ったが、疲労感、使用可能時間に常温下での使用より格段にすぐれていたことがわたった。

常温下で使用した時には、使用後期に湿度、温度の上昇および恐らくは炭酸ガス濃度の増加とともに相まって、かなり苦しさを感じる。

労働負荷の大きい時には呼吸抵抗も感じるので、これにも改良の余地があると思われる。

しかし、温度、湿度、呼吸抵抗に関しては、現在の往復式ものを循環式に設計変更すれば、大幅に改良できることは明らかであるので、機構が複雑にならぬが、この点が将来の課題として残された。

おわりに、この呼吸器の設計、製作を担当していただいた重松製作所ならびに低温実験用装置の使用を許可して下さった雪害実験研究所に深く感謝致します。

引用文献

1) 千日パーソト火災研究調査報告書、防災都市計画研究所、MANU都市建築研究所編、昭和47年10月
2) 太洋デパート火災概況、熊本市消防局、昭和48年12月
3) 「磐光ホテル」火災概要、都庁市消防本部、昭和44年2月11日
4) その他：火災、日本火災学会発行
5) 生理学展望 William F.Ganong 著、松田幸次郎他2名訳、PP474～488、昭和46年 丸善株式会社
6) 人工呼吸の基礎と臨床 山村秀夫編、昭和43年 真興出版株式会社
Development of an Oxygen-Generating Breathing Apparatus
— II. Design and Performance—

(Abstract)

Satoshi Takahashi

(Received December 11, 1975)

This paper describes the design and performance of an O₂-generating emergency self-rescuer.

The desirable properties for the self-rescuer were derived by analysing a large number of fire cases and by some considerations of the fire brigade's abilities and objectives.

It was concluded that the duration time of the apparatus was of primary importance.

This standard duration time is 20 minutes under an assumed breathing rate of 40l/min or O₂ intake of 1.7l/min.

The O₂ deficiency phenomenon at the first few minutes before chemical reactions become active enough was obvious in the former report.

Therefore the supplementary O₂ supplying device was inevitable.

A small O₂ cylinder, with a capacity of 20m/ (150 atm O₂) was used, which not only prevents a deficient O₂ supply but also prevents suffocation through the decrease of breathing gas in the bag.

This necessary volume of O₂ was determined experimentally and theoretically calculated (in the paper I) under the assumed condition of use.

This newly developed apparatus has been called a “return type apparatus” in comparison with the conventional “circuit type apparatus” because it inhales the regenerated and stored gas again through the O₂ canister.

This type is compact and may be more economical than the circuit type.

The main problems of this apparatus are that the inhaled gas is warmed again even though it is cooled in the breathing bag and become humid at the latter period of use, which spoils the comfortability of breathing. But under a cooler atmosphere (below 10°C), these faults would not be encountered (Table 2) and if necessary, the design can be changed into a circuit type apparatus.

This new O₂ mask enables a man to enter the 25 storey of a building return under galloping condition.
煙および燃焼分解ガス中に含まれる刺激性成分
について
(概 要)

守川 時生

(昭和50年12月13日受理)

火災時に発生する煙や熱分解ガスのあるものは、刺激性が強く、目や呼吸器系を痛め、火災からの避難を困難にする恐怖がある。アクロレイン、ホルムアルデヒドおよび低級脂肪酸は塩基化水素などとは異なり、何なる有機物からでも発生する可能性のある刺激性物質である。

横型管状炉に挿入した石英管をいろいろの温度条件に設定し、空気、窒素、あるいはその混合ガスを通じて、各種物質を燃焼、熱分解し、低級脂肪酸、ホルムアルデヒド、アクロレインの分析を行なった。その結果、くん焼領域の300〜450℃で、これら成分の発生の最大があった。一般に、3成分ともポリエチレン、ポリブレイン、ピニオン、セルロースなどからの発生量が多く、ポリスチレン、フェノール樹脂、ポリ塩化ビニル、ナイロン～6などからの発生は少なかった。

発生量は、前群の場合、最大で低級脂肪酸2〜4×10⁻⁴モル／g、ホルムアルデヒド0.5〜2.5×10⁻⁴モル／g、アクロレイン0.5×3.5×10⁻⁴モル／gている。
Evolution of Irritant Materials from Smoldering Combustion

Tokio Morikawa
(Received December 13, 1975)

The evolution of irritants, acrolein, formaldehyde and volatile fatty acids were determined when various materials were heated in a current of air or nitrogen. Polyethylene, polypropylene, vynylon and cellulosic materials produced relatively large quantities of irritants. The evolution of acrolein and formaldehyde was much more dangerous than that of volatile fatty acids in terms of toxicity. The maximum evolution of acrolein and formaldehyde in practical smoldering combustion experiments was $1/2 - 1/3$ of that in the temperature-controlled experiments. Estimated concentrations of both acrolein and formaldehyde indicate that a considerably hazardous condition could be reached even by smoldering fires.

Introduction

Recently, problems of smoke from fires have been of growing concern. The irritant effect of smoke is one of the major problems. Some smoke irritates the nose, throat and upper respiratory system. It also has a lachrymatory effect that hinders visibility\(^1\). These irritant effects of smoke could lead to failure in escaping from fires. Acrolein, formaldehyde, volatile fatty acids and hydrogen chloride are considered to be mainly responsible for such irritant effects. Except for hydrogen chloride, these irritants could be produced from any burning or smoldering organic compounds. It is known that these irritants are produced when wood or cellulosic materials are burned or pyrolyzed\(^2-3\). The irritants from burning of even such conventional materials can hardly be considered negligible, since the construction of houses has improved in terms of air tightness.

Few reports are available on quantitative data of these irritants evolved by combustion or pyrolysis of organic materials, both natural and synthetic polymers. This paper provides fundamental data of these irritants from various materials subjected to combustion or pyrolysis under different conditions and also the estimated toxic level increase in an actual room.

Experimental

1. Temperature-controlled experiments

The combustion and pyrolysis were conducted in a quartz tube inserted into a cylindrical electric furnace. The gaseous products were collected with a series of five water-containing impingers cooled by ice water, as shown in Fig. 1.

The temperature in the quartz tube was controlled automatically using a chromel-alumel thermocouple inserted in the quartz tube. The thermocouple was situated a little upstream from the specimen so as not to be affected by the decomposed gases. The specimen was placed in
an aluminum foil boat and inserted by a spoon into the quartz tube 25 cm from the outlet of the furnace. Air, nitrogen gas or a mixture of air and nitrogen gas was supplied at the rate of 1.83 l/min. The duration of heating the specimen was limited to a maximum of 1 hour.

Regarding the volatile fatty acids determination, the water from the impingers was flushed with CO₂-free air to remove dissolved CO₂. The water containing the dissolved volatile fatty acids was titrated with 0.01N sodium hydroxide solution to pH of 7. The composition of the volatile fatty acids was determined by gas chromatography at a column over temperature of 130°C, using helium carrier gas, a thermal conductivity detector and a column (3m x 3mm) packed with REG 6000F. It was necessary to inject many samples in order to obtain an equilibrium between the fatty acids and the polyethylene glycol in the column packing. In the case of polyvinylchloride, nylon-6 and phenolic resin, the decomposition or combustion products were condensed in the cold trap without water and were directly subjected to gas chromatographic analysis to determine volatile fatty acids quantity. The products from diammonium phosphate-treated cellulose were absorbed in the impingers containing sodium hydroxide solution. The combined solution was acidified with sulfuric acid, and steam-distilled to separate the volatile fatty acids. The fatty acids solution was then titrated with 0.01N sodium hydroxide solution.

Formaldehyde in the water from the impingers was determined colorimetrically using chromotropic acid after suspended materials in the water were removed by filtration.

Acrolein, also collected in the water impingers, was determined by means of gas chromatography using a column oven temperature of 120°C, a frame ionization detector and a column (3m x 3mm) packed with Porapac Q.

2. Experiments under smoldering conditions

More practical smoldering experiments were conducted in a 3 l dessicator where 10g of specimen was kept in contact with an electrically heated nichrome coil for 30 minutes, maintaining 2 l/min supply of air. Products in the smoldering combustion were collected in the above-mentioned impingers. In these experiments, only acrolein and formaldehyde were determined by gas chromatography and chromotropic acid method respectively.

Only materials capable of smoldering under the normal conditions were selected for these
experiments.

Since a condensate containing formaldehyde also collected on the inside of the dessicator and in the impinger tubes, it was removed by a water wash and combined with the water from the impingers before analysis. But gas chromatographic analysis of this condensate indicated that acrolein was not present. The weight loss of the specimen varied considerably for each experiment. Therefore, the experiments were repeated 5 times under the same conditions, and the results were averaged.

Results and Discussion

1. Temperature-controlled experiments

The evolution of volatile fatty acids, formaldehyde and acrolein from various materials heated in air is shown in Figs. 2-4 respectively. Generally, the maximum evolution of these irritants occurred at 300 – 450°C, a little lower than the flaming temperature. At the flaming temperature (mostly 450 – 500°C) or above it, the irritants, once formed, are presumed to be oxidized or decomposed. The evolution of the irritants from polyethylene, polypropylene and cellulosic materials was large, while that from polystyrene, phenolic resin, polyvinylchloride

Fig. 2 Evolution of volatile fatty acids from various materials in air.
Sample weight for each insertion: 250–500mg
*The numbers corresponding to these materials were used in the other figures as well.

Fig. 3 Evolution of formaldehyde from various materials in air. Sample weight: 500mg
Fig. 4 Evolution of acrolein from various materials heated in air.
Sample weight: 500mg

Fig. 5 Effect of weight of sample in each insertion on evolution of formaldehyde.
and nylon-6 was small. only the trace of volatile fatty acids was detected when the collected decomposition products of phenolic resin, polyvinyl chloride and nylon-6 were subjected to gas chromatographic analysis.

The effect of sample weight on the evolution of formaldehyde was determined. The results are shown in Fig. 5. As expected, the evolution of formaldehyde per unit weight of sample was not much influenced by sample weight in smoldering combustion, while it was in flaming combustion. It is believed from this result that the evolution of volatile fatty acids and acrolein will behave in a similar manner, because there is always an abundant supply of air in smoldering combustion.

Fig. 6 Evolution of volatile fatty acids from oxygen-containing materials in nitrogen gas.
Sample weight: 500mg

Fig. 7 Evolution of formaldehyde from oxygen-containing materials in nitrogen gas.
Sample weight: 500mg

Fig. 8 Evolution of acrolein from oxygen-containing materials heated in nitrogen gas.
Sample weight: 500mg
Figs. 6–8 show the evolution of volatile fatty acids, formaldehyde and acrolein respectively from oxygen-containing materials in a nitrogen atmosphere. The maximum evolution of these materials occurred around 600°C, much higher than in air. The maximum evolution of each irritant was generally larger in nitrogen gas than in air. At a lower heating temperature, the evolution of the irritants was less than in the air, probably because there was no oxidation in the nitrogen atmosphere and therefore no temperature-rise on the surface of the specimen. But even in the nitrogen atmosphere when the heating temperature was raised over 600°C, the evolution decreased probably because of a secondary decomposition or polymerization.

The composition of the volatile fatty acids determined by gas chromatography is shown in Table 1.

<table>
<thead>
<tr>
<th>Atmosphere (air)</th>
<th>Acetic acid</th>
<th>Formic acid</th>
<th>Propionic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood (cedar)</td>
<td>300°C</td>
<td>1.0</td>
<td>0.33</td>
</tr>
<tr>
<td>Cellulose</td>
<td>350</td>
<td>1.0</td>
<td>0.80</td>
</tr>
<tr>
<td>Glucose</td>
<td>350</td>
<td>1.0</td>
<td>0.17</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>350</td>
<td>1.0</td>
<td>1.2</td>
</tr>
<tr>
<td>Polypropylene</td>
<td>300</td>
<td>0.49</td>
<td>0.067</td>
</tr>
<tr>
<td>Atmosphere (N₂)</td>
<td>600</td>
<td>1.0</td>
<td>0.31</td>
</tr>
<tr>
<td>Wood (cedar)</td>
<td>600</td>
<td>1.0</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Table 1. Formic and acetic acids, the most toxic, accounted for most of the fatty acids. Evolution of volatile fatty acids, formaldehyde and acrolein in the atmosphere of different oxygen concentrations are shown in Figs. 9–12 respectively.

Fig. 9 Effect of oxygen concentration on evolution of volatile fatty acids from polyethylene. Sample weight: 500mg
Fig. 10 Effect of oxygen concentration on evolution of formaldehyde from polyethylene. Sample weight: 500mg

Fig. 11 Effect of oxygen concentration on evolution of acrolein from polyethylene. Sample weight: 500mg

Fig. 12 Effect of oxygen concentration on evolution of acrolein from cellulose. Sample weight: 500mg
The results in Figs. 9–10 indicate that a higher oxygen concentration produces a greater amount of the irritants in smoldering combustion. In the case of acrolein evolution experiments, two materials, polyethylene and cellulose were selected, because they evolved the greatest amount of acrolein among non-oxygen-containing materials and oxygen-containing materials respectively. Since it is expected from Fig. 9–10 that a greater amount of acrolein is produced at a higher oxygen concentration in smoldering combustion at a low temperature, only temperatures at which flaming occurs in the normal atmosphere were used. At these higher temperatures, it was generally found that the oxygen concentration down to 5.25% produced the greatest amount of acrolein because of non-flaming combustion. But in these experiments, the evolution of any irritant in any oxygen-reduced atmosphere was lower than the maximum evolution in the normal atmosphere.

Diammonium phosphate-treated cellulose evolved less volatile fatty acids when heated at 350°C in the air current, as shown in Fig. 13. It is believed that carbonization, accelerated by diammonium phosphate, decreased the evolution of the fatty acids along with that of other gaseous decomposition products. Based on this result, it follows that formaldehyde and acrolein will also be reduced.

The effect of halogens from Halon 2402 on the evolution of formaldehyde was determined, as shown in Fig. 14. The chain reaction-inhibiting effect by halogens in the gaseous phase decreased the production of formaldehyde at and over flaming temperature. This should apply to the formation of acrolein and volatile fatty acids. These results indicate that the formation of these three irritants are suppressed by fire retardant treatment.

Figs. 2–4 show that the ratio of the maximum evolution of volatile fatty acids, formaldehyde and acrolein is roughly 1:5:1. the threshold limit values set by American
fig. 14 Effect of halogenated hydrocarbon (Halon 2402) on evolution of formaldehyde from polyethylene.

Sample weight: 500mg
Concentration of halon 2402 in air: 13%

Conference of Governmental Hygienist (ACGIH) in 1974 for formic acid, acetic acid, formaldehyde and acrolein are 5, 10, 0.2 and 0.1 ppm respectively. If the acute toxicity for these irritants is correlated with the threshold limit values, the toxic effect created by the evolution of volatile fatty acids can be said to be at least 10 times smaller than the other two.

2. Mechanism for the formation of the irritants

There are three kinds of possible reactions on the surface of the specimen: thermal degradation, oxidative degradation and complete oxidation\(^4\). The latter two are considered to be almost negligibly small compared with the thermal degradation because of the small surface area of the specimen.

Therefore, the first step in the formation of volatile fatty acids, formaldehyde and acrolein seems to be the thermal degradation. It is known that the pyrolysis of polyethylene produces ethane, propane, butane, butene, etc. and that the pyrolysis of polystyrene produces aromatic hydrocarbons such as styrene monomer, toluene, benzene, etc\(^5,6\). It is also believed that the decomposition products of other aliphatic polymers are similar to those of polyethylene and the products of other aromatic polymers similar to those of polystyrene. It is reported that the oxidation of aliphatic hydrocarbons, such as propane, produces volatile fatty acids and formaldehyde\(^7\).

The second step is probably oxidative degradation of the decomposition products in the gas phase, in which the irritants are formed.

However, in the case of oxygen-containing polymers, especially cellulose, the present
experiments indicated that most of the oxygen atoms contained in the irritants come from the original materials themselves. The structure of most oxygen-containing polymers such as cellulose and polymethylenemethacrylate suggests that scission of polymers, not the oxidation, dominate the formation of irritants.

If it is assumed that the irritants are derived from intermediate products of decomposition, the formation of the irritants is dependent on the structure of the polymer. Oxidation of n-hexane (taken as a representative of decomposition products of aliphatic polymers) resulted in much more formaldehyde and volatile fatty acids than that of benzene (a representative of decomposition products from aromatic polymers), as shown in Figs. 15–16. These results

![Graph](image1)

Fig. 15 Evolution of volatile fatty acids from n-hexane and benzene in air.

![Graph](image2)

Fig. 16 Evolution of formaldehyde from n-hexane and benzene in air.

indicate why the evolution of the irritants from aliphatic polymers is much larger than from aromatic polymers.

3. **Experiments under smoldering conditions**

The results in the furnace experiments showed that the evolutions of volatile fatty acids were negligibly small in terms of toxicity. Therefore, only formaldehyde and acrolein were determined in the more practical smoldering experiments conducted in a dessicator. Results are shown in Table 2. The materials selected in these experiments were limited to cellulosic
Table 2 Formaldehyde and acrolein obtained from various smoldering materials

<table>
<thead>
<tr>
<th></th>
<th>Formaldehyde (mol/g of sample)</th>
<th>Acrolein (mol/g of sample)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% cotton batting</td>
<td>0.63×10^{-4}</td>
<td>0.21×10^{-4}</td>
</tr>
<tr>
<td>50/50 cotton/polypropylene batting</td>
<td>1.22×10^{-4}</td>
<td>0.18×10^{-4}</td>
</tr>
<tr>
<td>60/40 cotton/polyester batting</td>
<td>0.78×10^{-4}</td>
<td>0.12×10^{-4}</td>
</tr>
<tr>
<td>Absorbent cotton</td>
<td>3.05×10^{-4}</td>
<td>0.31×10^{-4}</td>
</tr>
<tr>
<td>Cauze</td>
<td>3.34×10^{-4}</td>
<td>0.28×10^{-4}</td>
</tr>
<tr>
<td>Newspaper</td>
<td>3.01×10^{-4}</td>
<td>0.13×10^{-4}</td>
</tr>
<tr>
<td>Cedar (bar)</td>
<td>2.10×10^{-4}</td>
<td>0.24×10^{-4}</td>
</tr>
<tr>
<td>Cedar (saw dust)</td>
<td>2.65×10^{-4}</td>
<td>0.14×10^{-4}</td>
</tr>
<tr>
<td>Tatami mat (straw)</td>
<td>0.58×10^{-4}</td>
<td>0.097×10^{-4}</td>
</tr>
<tr>
<td>Tatami mat cover (rush)</td>
<td>0.22×10^{-4}</td>
<td>0.083×10^{-4}</td>
</tr>
</tbody>
</table>

materials which are likely to be found in houses and to continue to smolder under practical conditions. Although plastics, such as polyethylene, may produce the irritants if exposed to fires under some conditions, they were not included in these experiments, because they do not exhibit prolonged smoldering characteristics.

The evolution of acrolein from most of the materials used was about one tenth of that of formaldehyde as was the case with the temperature-controlled experiments. The evolutions of both acrolein and formaldehyde were $1/2 - 1/3$ of those in the temperature-controlled experiments. These rather small evolutions must have resulted from the wide temperature range encountered in smoldering combustion.

The maximum rate of weight loss was 5g/min for 200g smoldering cotton batting and 2g/min for 1500g of smoldering straw mat, although the rate of weight loss will vary depending on conditions. The rate of ventilation of a modern house, completely closed, is considered to be $0.5 - 1.0$ air changes/hr. Based on these data, the concentrations of acrolein and formaldehyde in a room volume of 25m3 were estimated and found to increase with time as shown in Table 3.

Table 3 Calculated concentrations of acrolein and formaldehyde, with respect to time, evolved from smoldering cotton batting in a room of 25m3

<table>
<thead>
<tr>
<th></th>
<th>20 min</th>
<th>40</th>
<th>60</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrolein</td>
<td>1.7 ppm</td>
<td>2.9</td>
<td>3.8</td>
<td>4.5</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>5.2</td>
<td>8.9</td>
<td>11.5</td>
<td>13.5</td>
</tr>
</tbody>
</table>

Rate of smoldering : 5g/min
Rate of ventilation : 1 airchang/hr

The toxic effect of acrolein for a short time exposure at 1 ppm causes irritation to noses and eyes within 4 minutes, and is almost intolerable after 5 minutes. A 5.5 ppm level causes some irritation to noses and eyes in 20 seconds and is intolerable after 1 minute. A 10 ppm level even causes death in a few minutes. The toxic effect of formaldehyde is much lower. However, the level of 10 – 20 ppm still makes it difficult to breath normally and causes coughing.
The estimated concentrations, especially acrolein, are on an almost intolerable level. In actual smoldering fires, the rate of smoldering could possibly be larger than 5g/min due to a larger amount of combustibles, and the rate of ventilation could possibly be smaller than 1 time air change/hr which would create a higher toxic level. When it is considered that people in deep sleep, infants, old people, invalids and hospital patients are the ones most likely to be overcome by the irritants from a fire, the evolution of acrolein and formaldehyde, from even small smoldering fires far from actual flames, can not be neglected.

Conclusion and Summary

The maximum evolution of volatile fatty acids, formaldehyde, acrolein was obtained when materials were subjected to smoldering combustion at 300 – 450°C. The materials which produced relatively large quantities of irritants were polyethylene, polypropylene, vinylon and cellulose.

The evolution of volatile fatty acids was almost negligible in terms of toxicity compared with those of acrolein and formaldehyde. The maximum evolution of acrolein was approximately one tenth of that of formaldehyde. But, since acrolein is at least twenty times more toxic than formaldehyde, the evolution of acrolein can be considered more dangerous than that of formaldehyde.

Oxygen in the air attributed to the formation of irritants from non-oxygen-containing materials. In the case of oxygen-containing materials, especially cellulose, it is suggested that most of the oxygen atoms contained in the irritants come from the specimen itself.

The maximum evolution of both acrolein and formaldehyde in the smoldering experiments was 1/2 – 1/3 of that in the temperature-controlled experiments probably because smoldering occurred at a wide range of temperatures.

Estimated concentrations of both acrolein and formaldehyde versus time in a typical smoldering fire indicate that a considerably hazardous condition could be reached even when flaming does not occur.

Reference

1) T. Jin, Bull. of Japanese Assoc. of Fire Sci. & Engin. 22 No. 1–2 (1972)
3) F. L. Browne, Forest Products Lab. Rept. 2136 (1963)
6) S. L. Madorsky, S. Strauss, ibid., 53 (6) 361 (1954)
8) Kenchikugaku-benran p.1393, Maruzen, Tokyo (1964)
12) Personal Observations-Laboratory of Industrial Medicine, Eastman Kodak Co., Rochester, N. Y., 1936–1960
13) F. A. Patty, *Industrial Hygiene and Toxicology* Vol. II (1960)
消防研究所報告

通巻41号

昭和51年3月31日発行

発行

自治省 消防庁 消防研究所

〒181 東京都三鷹市中原3丁目14番1号
電話 (0422) 44-8331 （代表）