電気遠隔指示式風向風速計

用途 船舶用、警台、消防署、山間信号所、鉱山
高層建築物、その他一般気象観測並び保安用
(海上保安総局指定品)

特徴
1. 瞬時風向、風速を電気的に遠隔指示致します
2. 風向、風速共、発信器と受信器との間が如何様に離れていても差支へない
3. 純電気式で精度が高い
4. 強度及水防に萬全を期してあるから寿命が永い
5. 3m/sec より 60m/sec 近の風速が読取れる

その他御要求により如何様にも御設計致します

第一電機株式会社
本社 東京都千代田区有楽町ニノ五 営業部内
電話 日本橋⑥ 6725番

消防研究所御推奨

オーバル流体式流量計
協同研究者 工業技術院中央標準検定所

製作所 オーバル機器工業株式会社
東京都品川区東大島16545 電話大崎②2371番

總代理店 内外通商株式会社
東京都中央区築地2の2 電話京橋②2130〜49番
オオタ消防自動車

特徴
- 長時間の連続運転可能
- 全長: 3,800mm
- 馬力: 20馬力
- 電池: 3,000回転
- 全幅: 1,400mm
- ポンプ形式: 2段タービン
- 高さ: 1,800mm
- 放水力: 760m
- エンジンベース: 2,200mm
- 最大放水: 5.6m
- 頭部重量: 1,560kg
- 最高放水: 8.4m

（詳細は御照会下さい）

高速機関工業株式会社
東京都品川区東品川5丁目50
電話大崎@4506、4507、4508

トーパッ

エンジン

新型の消防ポンプ
軽便ガソリン
消防ポンプ

吐出し: 4.2L/分
吸水: 3.6L
放水量: 230L/分
重量: 74kg

3.5馬力発動機直結式

製造元 東京発動機株式会社

発注元 東発産業株式会社

支店 大阪・仙台

東京都中央区京橋二丁目十
電話京橋@4232・3・6251・3

ニッサン 消防車

ニッサン消防車の特長
1. 懐舊油冷却器付のためどのような長時間の高負荷運転にも耐える
2. 急速な機動の際でも強馬力に当たる
3. 懐舊油のものが極めて良い
4. エンジンが破損で長持ちする

日本機械工業株式会社
本社 東京 中央区京橋三ノ二 電話(京橋) 7265番
支店 大阪 東区北新八ノ九○

KMC式 消防ポンプ

近世的架装、使用良いポンプ車
各種消防車
その他の消防機械

1.500立水槽放水
銭付ポンプ車

駐在所 仙台・長野
工場 東京 八王子市中野町 電話(八王子) 8番
1. 行列のあいづつみ　富塚 1
2. 消防研究所主体第1回消防試験　富塚 2
3. 消防研究所第2回耐火試験総合報告　富塚 13
4. オープン自動車の耐火試験　達田重三その他 17
5. 消火器(装上式)の不燃性について(第1報)岩間一郎、井上亮胤 24
6. 腹・親家を有するニューレレーン　田村 淑 25
7. 高い天井面の温度伝導度　中川 勝作 31
8. 土蔵の耐火性に関する研究(第1報)　今津 博 33
9. 土蔵火災に関する　今津 博 40
10. 火災危険性より見た都市の製造について　増内 三郎 46
11. 建築関係について(第1報)　田村 淑 49
12. セルロイドの自然燃焼に関する研究(第1報)　秋田 一雄 51
13. 燃焼速度に及ぼす火災報知用リレーの1方式　守屋 忠雄 55
14. 油浸式変圧器の老化的発生について(第1報)　中村 孝 58
15. 混合用の研究(第2報)　富塚 洋 59
16. 最近の防火塗料の試験結果報告(第1報)　守屋 忠雄 61
17. 新刊紹介　守屋 忠雄 63
18. Abstract　上田辰五郎 64

（著）上田辰五郎

美しくて強いTUF廉で塗れる
防火塗料界の最高品質

防火塗料の適応幅広い

吉野の防火塗料

オーライトC.D.E.S.O.
消防研究所業務紹介 (1959年7月現在)

(A) 総合的研究

(1) 模擬火災
(2) 消防設備耐寒研究
(3) 小型市の火災模擬研究
(4) 消防ガス剤化
(5) 模擬火災と実地火災との相関

(B) 各機種研究

都市等級別：一等級と保険料率、日本家屋耐火性向上、防火本体
電気係：一火災感知器、電気火災、温度測定
物質係：一防火塗料、燃焼特性、風速及び温度測定
化学係：一セリノイド及び消火剤、燃焼特性、摂水式
機械係：一送風機の起動、安全性向上、小型動力ポンプ、真空ポンプ
検定係：一消火器性能検定規程、消火性能、消火器の改良

消防研究所報告雑誌主要論文目次
第1号 1950年2月発行

消防研究所技術課第1回
模擬火災報告…………富塚俊作
日本家屋火災初期時の現象…………中内俊作
初期火災に於ける煙の光透過率の測定及びその燃焼速度に関する研究…………廣瀬健一
燃焼速度の促進方法に関する研究…………石坂和夫
ふすまの焼け落ちに就て…………熊野隆平
消火性能及び消火範囲決定…………致との研究…………名倉健一
法隆寺電気火災の試験結果

発表：中内俊作 混合使用の研究…………富塚俊作

(数部若干あり、参考のためには貴重1部100円でお譲りします。引き続き1年4回発行の予定。予約お問い合わせください)

新機種紹介（下記の中は研究所有の研究は指導の結果、市販のはこびになったものです。新機種紹介で取次ぎますのでお知らせ下さい）

(1) 高圧ポンプ
(a) 4種類 (標準品にして互換性あり)
(b) エレベータ車両 (駆動板とつかねの耐震設計、高精度)

(2) 消防ロボット

目方は短命製の下分、部品は寸法及び形状の精度を保証する。
刊行のあいさつ

富塚 滋

去る2月下旬に消防研究所報告第1号を発行決定しましたところ、これが、消防関係の研究専門誌として、我が国初のものであった関係か、当時の反響があったことをうれしく思います。これは必ずしも編集者側の手前書かかはからではなかろうと思います。

外はともかく、私たちは研究所内に研究施設を高めることだけは歴然たる事実であります。その証拠は、第2号にいわゆる原稿を削り、これをすべて一層に収めようとする百頁以上にしないと追いつかない形態に立ち至りました。第1号に於て発表した如く、その後と1年2回刊行とする、第号百頁以上の長大なものとなり申し上げます。それならむしろ、各号の頁は64頁でおさえ、原稿充足次第1年に何回も発行することがよくないか？　当分1年約4回、大体に於て季刊位の時には進もうではないかと思います。そのため、第1号に於ての原稿とはすっかりくらいがつてしまい、編集者は無見識ぶりを、はくろしけてしまいましたが、むろんこれにより、赤面を感じるところか、大いなる満足を感じする次第です。

またこの年を1年6回とし、更に明後年位には、それを月刊にしたいと念じています。ところその時の、「論文の数は多いが火事が一気に解決するのはこれが正しいか？」なんていう言葉が出る様であるかないかという気を感じます。「研究のための研究でなく、もつと実用的なものを…」などの意をもとにして出そうと思います。我々の見解狭小な能力の不足により、そういったことに陥りがちと思いませんので、せいかせい注意いたします。しかし、一般の方も、長い目を以て、結果を見守りながいたいと思います。大体研究なってものには、植物の場合の如く、数年後には数百年後に使わな様に、しのぎの所もあるのですから。しかし一見これが巡りな様でも、皆様のごとくご承知で居ますほど実に実に後立つ場合もくはなくありません。で、こんなものが何の役に立つか？」と考える前に一応「何か適用の道はあるか？」と善意に考えていたく、ことを思い思います。

向「そんなことはわかりつつある。それよりもその困難の打開方法の研究を先にすべきだ」という様々な指を受けるものもあるかと思いますが、改めて強く思うものもあり上げて参ります。なぜなら、我々消防界には、「これで、短くの実用主義や、精神主義があまりにも狂乱で、その「わかり切っている」というが質せ、あらいつれも「勘」でわかつてるだけでありまして、これこれからしかしか、も精微に数的な正確にわかつてるわけではないからです。そのため質は、実用追及も、暗中模索に陥りがちであり、解決は即座にくれていたふしが多いと思われます。急がば遅れ。解決を策せんとせば、第一歩として、真実の究明が必要です。「わかり切てる」は真に科学的にわかり切ってるにしないといけません。そうした努力だけに相当に致しませんことをお詫解いたしでございます。

向、火災研究関係の専門誌として、これが本邦唯一のものである情勢は甚大となりそうありますので、（火災学会の議もありましたり…）そうである関、本誌の末尾の若干の頁をさいで、いろいろ紹介の労をとり、皆様の便宜をはかりたいと思います。事項は大体

（イ） 火災関係の新刊図書（ロ） 火災関係の研究報文（ハ） 消防関係の新機器等

いずれも名著と概要を紹介し、これらで紹介します。若し原著者から書いて誤っていたけれども、更に好都合です。館内もさす採録したいと思いますが、向、目おとしが出来るかと思いますから、お気つかいの方はお面倒でも一報下さい。専門家は、原則として、メートル法によりますからなるべくそれでお書き下さい。若し重複でない場合はそれに換算致しますから、お訳承下さい。

宛先は、消防研究所技術課図書係

—— 1 ——
1. 論　言
気温低下の場合、氷点を境として、消防の諸機器取扱上の困難が、著しく増加することは周知である。それらを列挙してみると、（a）水関係の諸機器は、凍結して動かなくななる。 （ポンプのイムペラー、軸、コック等、発動機の放熱器、導水管、ホース、消火栓、水をつかる消火器類等）
（b） 溶接油の粘度が増し操動部分が滑らかでなくなる。 最後に固結する。
（c） 路面に水分が凍って、スリップを起こす。
（d） 积雪及び積雪時の泥等で、輪が自由を失う。
（e） 雪化粧の際は、自動車の風よけガラスまたは鏡に雪がつきて、先が見えにくくなる。
これらの困難の打開は簡単といえば簡単で、何等特殊知識技能を要せず、子供にかかって、一応の解決が考えられる。即ち凍ったものはあぶるか、それに洗いかけるかですむしろ1) すべきで、砂をまく、ぬかは固いものを敷く、雪がつとれればはらう、という様なことで、すむからである。
だがそれには、適當の面倒さと、時間の損失とを伴うことがふつうであり、場合により、危険さえある。2) それにかかわらず、日本人は、しんぼうがいので、多くは、避け得ない運命と観念してるかに見える。その一般人の呪文に甘えて、業者側も、何等根本的解決の手を打たず、使う方の側は苦労して、何とかしぶっつけているのが現状だ。これは技術的に見て、あまり

1) 北海道の消防は、消火栓のふたの凍ったのをむつかため、普通湯沃2かんを用意して行く。
2) 1949年11月29日の伊那の大火がこの一例、トーチランプであるぶるのあやまどポンプ自動車1台、手動ガソリン車2台を焼失。

富塚清

にもみじめであるので、黙って行かせに行かせ、今回消防機器全般に亘って、徹底的な耐寒策策を練ることを発心した。
ところでそれへの道はいろいろある。関に日本の今までのやり口が原始的にすぎるのであるから、これを二歩三歩進めるには、初等の物理的化学的習習の応用で事足るのである。実験するも研究するも何もない。常識的なことを即座に実行して万難満はあるまい。尚、実際に耐寒実験を行った例は戦前航空の方面にいくらでもあり、その結果は実地に適用されていた。消防でき、北流のはこの面を成程度解決していたのと聞い及ぶ。
だから、「今更耐寒実験の必要はあるまい。特に大戦を経んで、寒地に出かけるなんて無用のわざ、せいぜいのところ、低温室の中でやればよい」……などという議も出よう。
だが、現在、それらの研究成果の大半は逸散してしまって、また多少残っていたとしても、大半は高価にすぎて、到底今の大戦的消防に直移入は出不来ない。尚、研究者やメーカーの大半は今日のところ寒地にあるので、寒地からの派えに対して同情がうすい。つい寒地での常識で事を容易に延べ易い。この欠陥の是正は、低温室に機械だけぶちこんでやる実験では到底望めない。何よりもさらに、研究者やメーカーのからだそのものの寒地経験が必要だ。それも、単に低温だけでなく、積雪、吹雪、急坂……等寒地での困難のすべてにふれしみることだ。
実際に寒い雪の深い山地に出かけて行けば、たまつつても、上述の様な目的が総合的に達せられる。研究論文という様な直接的な結果が出なくても、間接的に益すところが僅少であるま

3) 深冬は北海道のヘイライで、海軍はカウチで連年実験した。
かいし、そこは遠すぎるし、人員の防寒保険の点にも、多分ー危険がある。一日も処で出たら、規定が成り立つ有何、大森は材料の突然あたらしいが、こらえ距離 700km 内外、到底今後のけな豫章内では諦いきれない。そこで、東京から約半日行程のところに、候補地を探し、兵州の豫訪松本地方に自走の矢を立てた。これは、東京からの距離 200km 内外であるが、本州有数の震災で、零下 20°に達することは珍しくない。（仙台は東京より 56 km の距離にあるが、温度は東京に比しても FormBuilder 低くない。盛岡でも行
つてはじめて、豫訪地の程度）この程度であろう。第一回の豫実験として不足はないだろうとも感じられる。仰、豫実験場として、切創高々峯を選んだ。そこには適当な宿がないので、豫訪市

4) 預行費（豫実費基金を含めて）50,000円を最初除算。しかし、自動車の使用などの不問の費用がかかる、結果として、10万円かかった。

3. 實験の項目と、大体のねらい
(a) 消防用動力ポンプ關係。（実験調査・機械係）
5) 長野県豫訪部北山村場川町内。雲取山西南麓避
6) 最近の 2 倍は特に観察。1948年には雲取、雲取

に宿り、毎日そこから通うつもりだったが、距
離が 10km あり不便だから、あとでその不便
なき雲取高原にかん。こまは充分寒い（零下
28℃ のレコードがある）宿泊の利便に富む。

2. 實験場所及び時期の選定

今回の実験の目的は、北海道からも訪問である。こちらは日本中で、低湿が最も浪潮される場所だから、そこで実験地として選ぶのが一番よい。ことは明らかである。し
参加機材：一
（i）トヨタ・モリタ消防ポンプ自動車
（ii）ジャイアント自動8輪ポンプ車
（iii）太田小型四輪ポンプ車
（iv）トーハツ35馬力、軽便動力ポンプ
（v）ルビノRV1型7.5馬力、軽便ポンプ
（i）（ii）（iii）共、東京から自走で現場に送る。
途中大スリと小山、御坂峠等の難所がある。後者
は多期線雪で、かなりの危険もある。

研究のねらいは下の通り。
（i）発動機の低温起動
起動燃料として、高気化性の燃料（エーテル）
等を準備、不凍冷却液、潤滑油の硬化防止法、
各種暖房装置、慣性始動装置（井野計器製作所
製）等を準備。
（ii）ポンプ凍結防止法
ポンプを板金で被覆し、中に発動機の排気を
吹き送り、加熱する方法。アルコールを注入し
て水分の凍結を防ぐ方法等適用。
（b）ホース関係（推定、機械係、化学係）
（i）凍結ホースをしまい込む問題（アルコール
をつつかけてかすすこと、加熱して折りま
げることとの2案を立てる）
（ii）不凍液をつけておく方法（試験片を若
干用意）
（iii）布製及びゴム引きホースの試験
（凍結したもの、折り曲げ試験を目指す）
（c）不凍消火栓及び不凍給水栓。（推定、都市
等機関）
（型式は両者共装式。消火栓は、氷の温度が
に設置して実地の機能を数年に亘り試験。尚、
装置場所の温度分布状況測定）
（d）消火器関係（推定、検定係）
各種の消火器及び消火器を携行。その凍結乃
至機能低下状況を検査。保溫装置、不凍剤等も
用意して試験する。
（e）火災感知器関係（推定、電気係）
火災感知器（グラス球式）を1セット、山崎
関係者に設置して、実用試験。尚、研究所製
のもの数セットを携行。専門にさらし実験。

（総務）富畑、清、中村、孝
（都市等機関）岩間、一郎、井上、廣樹
（機械係）遠藤、景三、春馬、午夫
（中町）片野、貞一、田村、淑
（化学係）永瀬、葉、田中、雄
（気象係）石坂、和嘉
（電気係）高橋、昭一
（推定係）上田、幸三

4. 機材の輸送
実験で要る諸機材（ガソリン、薬剤、食料、
住宅用設備、小型動力ポンプ2台含めて）
の輸送は、経費側面のため出来る限り、実験用
ポンプ自動車2台（トヨタ・モリタ及びジャイ
アント）につくって持っていくことにした。（消
火栓及び給水栓は汽車で送る）
このため両車共、過重となり、途中の坂道で
は相当の難渋をした。

先行したジャイアントは、1月14日早朝東京
発、折り便とし、本州より雪降りにあい難行。　
谷村も鋸屋よりおくれ午後となる。全地で実
験後、15時30分谷村着、御坂峠越で甲府に向
ることになる。船津でチェーンをかけて雪にか
つたところ、既に17時すぎ、夕闇はせまるし、
積雪がふかく、加るに雪がふりしきり、先き
が見えず、しかも、飛雪が目をとじて雪をす
（風よけガラスがないため）到着無事に雪を越
そうもないので、船津に逆行、そこで宿る。

翌15日午前甲府で演練の検定なので、15日早
朝大雪に逆行、そこより甲府まで汽車輸送。翌
16日山に登る。「薄雾から上、輪にチェーンを
かける方が安全だ」という忠告を地人の人から
受けたが、道をくぐってチェーン無しで登り、目
地の直近近くまでは拖欠したもの。そこで急坂と
深い雪に遭遇し、全く動きがとれず、車をか
けきらかったが、既に夜となり、再上に雪の深いため、チェーンがうまくいか
ず、やむなく若干下降、雪の増しが度に増
る。（がいと、チェーンはせつばつまってか
らでなく、少し早めに、らかな場所でかけてお
べきだったのだと悟る。）

翌17日チェーンをかけ、空車とし、数人のあ
と押し付けて、最後の急坂を登る。「こういうとき車がもとろ軽かったらどんなにいいか」と誰もが痛感。

但しこれは新車であり、機械の故障は断絶でなかったことは幸いであった。

トヨダ・モリタ消防車は、サイオンクと持ちかい、全くの古物で、東京消防庁で、数個やかしたものを。薬品としてよりもむしろ教育用試験品として、消防で護り受けたもの。それに様々な実験用のものを含む細工を加え、しかも一昨年に荷物を積んだから、もともと、負荷過重に失した。準備中、すーパーサー、ハンドル等にも欠点百出。そのため14日出発の予定に間に合わず、8日おくれて、17日に出発。その日は滑橋に一泊、翌日御嶽山まで、再び滑橋に一泊。翌19日剣橋に登ろうとしたところ、途中で発動機発熱、目的地の約15km手前で、ガス供給、連軸、全て切、運転不能とした。荷物はそこで、馬と人手等で引き上げ、22日早朝の実験に参女の間にして合う。

到達までに3日かかった（渡船は2日）は、途中で頻々と故障を起したからである。最も故障したのは、発動ギア直後の革カッタリングの少しつけボルトである。ここには角度の自由性があるが、心の狂いに応ずる性質がなく、ボルトに矢じるし取り付けが悪い。これが原因でかくも、頻々と折れたのだろう。明かに設計不良。もう1つ自力接続を加べるべきところである。最後に、連軸の組立てを誤ったこととの原因は、荷のかけすぎである。実験用機材を積んだことさえ乾燥機にとつては重すぎる。その上に、茅野から、参観者の多数が「好機運すべからす」と乗りこんだ。運転手は自分に危険な気がし、これも切れないなかったのである。

これで、悟れたことは次の諸点である。
(a) 老朽車に細工したものを長途引きまわすことはいけない。
(b) 消防車は既に重いボンプをつんでいるか。

7) サイオンク消防車の自重は 860kg であり、普通の貨物車に比し、約 200kg 軽い。

(ε) 有力なトラックを必ずう随行させ、それに専用荷物を負わすべきである。

(δ) チェーンをかけ雪路を上るときは、発動機が overload により白いから、再び休み、冷却器に冷水を噴霧に補給しなくてはならない。

太田橋消防ポンプ車は、東京→箱根→富士→かじか窪→甲府→茅野→剣橋の経路で、補助トラック同伴、21日18時に無事到着。東京出発は前日21時。夜中箱根を越え、富士川沿いの難路は午前に通過、約20時まで安着。富士川沿いの約 40km の間は相撲の道路であり、御坂坂越えよりも切って危険であろうということであった。

東京から諏訪地方に行なる自動車道路は、以上の2つしかなく、しかもちょっと雪が降るとすぐに交通打結となる。日本の道路の貧弱が痛感される次第である。

5. 天候経過

実験期間中の天候経過は第1表及び第2図第3図に示す。

第1表

<table>
<thead>
<tr>
<th>月</th>
<th>日</th>
<th>天気</th>
<th>最低気温</th>
<th>時</th>
<th>考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1月17日</td>
<td>雪</td>
<td>-4℃</td>
<td></td>
<td></td>
<td>朝より温度急上昇、ガスかいる</td>
</tr>
<tr>
<td>19日</td>
<td>傍</td>
<td>-5℃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19日</td>
<td>傍</td>
<td>-5℃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20日</td>
<td>傍</td>
<td>+2℃</td>
<td></td>
<td></td>
<td>技術調査会開催日</td>
</tr>
<tr>
<td>21日</td>
<td>雪</td>
<td>-12℃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22日</td>
<td>雪</td>
<td>-13℃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23日</td>
<td>傍</td>
<td>-8℃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24日</td>
<td>傍</td>
<td>-4℃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25日</td>
<td>傍</td>
<td>-13℃</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

こうしたわけで、低温の点は、幾分物足らなかった。しかしこれは、昨年以前の異常の寒冬のせいだから致し方えない。因に、北海道の札幌に於て、この冬の最低温度は -18℃ にすぎなかったという。それに及ばずここ僅かに 5℃ だから今年としては、がまんすべきだろう。

同じ諏訪地方でも場所により相当のちがいがあることに気づいた。たとえば、18日に剣橋
(i) トヨダ・モリタ消防ポンプ車は、1月19日登山の途中で発動機破損、その修理に約10日を要したので、亜発の期間中には使用不能。2月5日より改めて試験を施行。その経過は本誌別冊に所載。
(ii) ジャイアント自動三輪ポンプ車
冷却器に不純液を入れる方法と、ポンプにメルチルアルコールを入れて凍結をふせぐ方法との2つを中心課題として、新愛知県警察局技術、魚住氏、加藤氏に実験をして賜り、ここにはその経過を略記。詳細は同社報告を見られた。

第一のものは、普通自動車ではありふれた方法だが、ポンプ車の場合はポンプの運転時ポンプの放水の一部を冷却水中に吹き通して、冷却を助けることがふつうである。これをそのまま適用すると、冷却器中の不純液を流し出し、すためしがうから、その回避策として、ポンプよりの水を器内に直接ふきこむなど、放熱器の外に吹きかけ、中との放熱を計る。はじめは露寒にしてかっとうかと思うが、後に、放熱器下半部に前後側から板を押しつけて、水溜りを設け、そこにポンプから水を流し入れ、楽で水はせき板の上間に流れて自由に流れ出る様にする。これで、ポンプ運転時の冷却は充分。走行時には、風風がこの仮で解けられるが、冬期には放熱器に余裕があるので、何等支障のないことが確認された。

ポンプは、ドレーン・コックを単に聞いて放置しただけで凍結により試験不能になる。両コックも同様。放水後、ドレーン・コックを

6. 実験経過
(A) 消防用動力ポンプ関係

8) 魚住氏、加藤芳一、『AA4型三輪消防自動車耐寒試験報告』新愛知県警、発行印刷 503、1950年2月5日
この車はまだ完成直後で、燃料器の諸調整が不充分だったため、起動及び運転に難渋した。

メタン・アルコールを注入してポンプの凍結をふせぐ方法はこれにも適用。終日終夜屋外に放置して運転に少しの支障がなかった。

(iii) オータ号消防ポンプ車

開放、約1時間からまわしを実行して、水分が追い出され、イムベラーの凍結はふせげる。真空ポンプもしばらくな結に水分がなくなっただけ放置すれば凍結の方ははなない。メタン・アルコールを注入しておくと、かくコック、各振の管中凍結が容易にふせげることを確認した。

起動については約1分後の低温では問題はない。気筒内の油は行わずに、手で吸入口をふさぎ、つよく、チョークしたので、容易に起動した。

(iv) トーハツ 3.5 馬力軽便ポンプ

この発動機は2サイクル式であり、潤滑油はオイルに混じって供給するのを立前としているので、発動機そのものは凍結に著しきことは絶無。水ポンプ及び真空ポンプ、コック等に凍結のおそれがあるので、発動機の排気管に熱を実施して凍ら。発動機とポンプとは直結だから、若しポンプ凍結の際は、それを光で加熱してきわめて早く、発動機を起動。以後はその排気熱で、真空ポンプ及びコック等に凍結を解くことが出来る。時間は1分以内であり、実用性のあることがわかった。

(V) ルピン RV1型 7.5 馬力軽便ポンプ

この発動機もまた、2サイクルであるので、前のもの同様、発動機そのものの凍結のおそれはない。ポンプは搭載仮型の小型のもので、ローター及び搭載仮型吸水口、送水口から手が届くので、放水後よく水を流し、油をさしておいて見たら、水分は中々完全にぬき取れず、やはり凍結を起した。そこで、放水直後
メチル・アルコールを 5％程度注入しておくことにしたところ、以後は完全に無し。従来の発動機の起動が低温により速く困難になるかをたしかめるため、気筒中に直接ガソリンを注入することを止め、チョークの使用だけ起動を試みる。この方法によって -5℃程度にところまでは、そう困難を感じない。最悪の時はでも 3 回の連続を引き伸ばす。しかし -10℃以下の場合は、15回引いても全然かからず、これは使用にならぬことを確認。但し、この温度でも、気筒内に注射すれば大抵ただ 2 回で引くことによって起動する。但し、使用ガソリンは普通の自動車用のものを。

こうした程度であつたから今回は、特に凍結性のよい燃料で試みることはしなかった。（メチル・エーテルは用意して行ったのであるが） -30℃以下に速くしてもなつたら、これを必要とするかも知れない。

（前後の二等試験には、各機械の起動難易の意味は全然ない。これを主目標とする場合も世間にはあるが）若し早く起動するために手段を選ばねというのならば、節どん加熱し、凍結性のよい燃料で注射してやればよいことは自明である。だがそうした方法は好ましくない点があるので、それと対するための方策の探求に今回は重点をおいたことは既述の通りである。そのために、ひとくスタートに困難する場合も出た。それは、何もその気のされでなくて、問題の困難さのせいであるが、傍観者にはその気の理解が乏しく、機械に劣るглаえる証をとばしたものもあったらしいことを、あえて耳にしてみた。競争は扱の世の中では、まことに起りそうな誤解である。だが、これは全く見落かいの証であり、これによって迷惑を蒙った向きもあるかと思ふから、こよりはつきり説明しておこうと考える。）

(b) ホース関係

第7図 冷結ホースの加熱装置

凍結したホースをアルコール中につきこめば容易に取ることは、わざわざ実験してみるまでもなく明らか。しかも内部に水のつまったとき、凍ったものをとくさには、アルコールの量がかさんで実用になりそうもないという点考えられたので、その実験を行わなかった。そして未だ、加熱法を試みる。これでホースの全長に亘ってやることは時間が大変であるから、折り返すあらかじめこれに当たって考える。今度は第7図の如く、笛の下から管をたきそれに横からホースを通してやる方法をとったが、端が深いのが、凍結ホースを困らぬことを通らす。不具合だつった。又ホースを 1m 近くも地面から引き上げる証もあることと思ふ。ホースを地面に横たわらさし、上方から加熱してのべる様にすることが、便利であるうということに気づく。

不凍液をつなぐておく方法に就ても、試験片数点の提出があつたので、試みたが、水によって容易にはけらくるもののみで、結果は不良。尚この方法では、ホース中の残り水の硬化を払うことが要らない。だから、前記の様な凍らせ加熱して折り返する方法に着眼を限り、その加熱方法の改良に努力を注ぐので、今後の行き方にて適切ではないかと感づられる。

綿ホースの外にゴムをつなぐホースの試験片は、水につけず、そのまゝ長く戶外にさらしてみたが、零度 18℃の迄までのところでは
ゴムに何等の異状もみなかった。

尚，ホースの洗浄は消防人にとって最も不快な仕事と聞かされるが，乾燥の促進によって，凍結の原因とも考えられるので，作業が機械的に簡便に達成される様な装置の立って製作を，高島屋製作島株式会社に依頼し，この実験に間に合わせたいとあがったがだめだった。[暖地に於ても雨季には乾燥に手間取る，その間に材質がそこわれることが大であるが，想像されるから，自然乾燥のみに頼る，何等かの敏速乾燥方法を具体化することは，全体消防界に有意義であろうと思われる。高圧蒸気乾燥法以外は多くのものと，最理想的のものかも知れないが，恐らくは高価が失われるだろうから，熱風乾燥式乾燥方法に頼合うか？　ともかく次回までには，何とかしたいと思う。]

（o）不凍消火水及び給水処

不凍消火水の設置が無く，この期間中に凍結出来ただけのもので，完全な試験は出来なかった。これの設置により，地下の温度分布が，いかに起きか第一の問題がある。それについては別項参照。9)

尚，これについては楽て水の行先に問題があ

多くの凍結の危険がある。次回には，長期に亘って精査の豫定。

地下消火栓の場合は，フト凍結をとカサハが

問題で，それは今どこを凍らせるかが一般らしいが，これに対しては，不凍液塗布法が

実行出来ると思われる。東京に帰来後寒い日を選んで，これを試みる豫定だったが，暖冬のせ

いで目的を果さなかった。

エチレンリコール，或はグリセリンの塗布

等が最適かと思う。一旦凍結したらものをに対して

メチルアルコール等を注ぐけることも，多くの場合有効である（大抵の場合水は霜柱状であり，

空際だっけだからその間にアルコールはす

ばやく侵入し，氷をとかすからである）が，ペ

た一面に凍つてる場合には，浸透に手間取る。

（これに関しては，田村湊氏に研究を依頼してあ

り，追って報告の豫定）

（p）消火器関係

蓄圧式亜化炭素消火器と泡消火器との二通りを

試験した。温度と噴出力との関係を調査。前者の場

合は，低温に相当して威力の低下を来すこと必

要であるが，それ以上の害悪はない。

泡消火器に普通亜化炭素充填の場合は，-8℃

で，大抵凍結が起るだけでなく，

炭酸ガスの発生が著しく悪くなり，

放出力弱くなる。液に不凍

剤を入れれば凍結だけは防止

できるが，ガスの発生不良は防ぎ

ない。低温によりガスの溶解度

が増すのが主因。A，B，両剤の

化合にとって，ガスを出す方式

と異なり亜化炭素瓶を別に持ち，

その内容ガスの放出を勧えると

する方式があるが，この場合は

低温による議論は前者よりも軽

い）

尚，耐架用消火器（やはり，A，B，両剤の化合に

よる方式）も市場に出ているが，今回は試みなかっ

た。

保冷法が一番問題がない。今回のは，消火器を

箱中に入れ，下方に電球を入れておく式。箱

の壁は2重で中間に銀層を入れる。電球は60W
程度。外が -10°C 位の場合、内部を +10°C 位に保つことは無かった。

但し、いつ使うかわからないものなど、冬中電力をつかうのはばかりらしいという気持がする。つうか、瞬間に急速に温度が上がればそれですむわけで、そこに考慮をあぐらして居る。強酸を水中に投することが多く、生石灰を水に投することも顕著が、いつれも熱量が不充分である。燃焼熱を利用するのが最有力であるが、但し、ふつうの燃焼はおそくて、不充分。そこで火薬の燃焼ガスを滑火器薬剤の中にぶらこむことを最初に思いつき化学によりたところ、デルミットの方が適當であろうという結論を得た。東京に帰来後試作して試験したところ、割合好結果を得た。（デルミット 1kg の発熱量約 900 cal. であり、この 800 calor で約 1 分間に 10kg の水の温度を 20°C だけ上昇させることが出来た。）この方法は、発動機の加熱にも充分適用可能である。値段もあまり高くはない。

(e) 火災感知器関係

これは単に低温中で放置し、誤報が出るかどうかをしらべただけであるが、いつれの式も、何等異状はなかった。

7. 宿 警

最初宿舎に仮定した筆者の所有の家は建坪約20坪。ひろをすれば10人位はとまれる。 警備の設備がまるでないのに、それを新設の豫定で進んだが工事が間に合わず、仕方なく、御幸旅館（北山村長の駆使するもの）の副宿を借りることにした。特に犠牲にやって買い、滞在費1日当り、約250円で上手に（ふつうの宿費の約1/3）但し、副食費としては、海産物豚肉及び豆類と約100人1日分を自動車につんで持って行き、それでも揃せたので、軽便的には決して乏しくはなかった。大体1人1日当り蛋白質80グラムを保証。海産物は大半煮しめ、これは築地市場よりおおし折手で買ったので実費より約2割安。軽便的にも、味美的にも、偏りのない二、とり合せに注意したので、安価ながら、比較的満足を買い得た様である。

健康は大体於て良好。たと1人、股のでき物（これは東京で既に発病）の悪化のため、豫定をうし上げて帰京したのであったけれど、他にも鼻かぜ役引いたものはあったが、本に鬱著にいたり、習者にかいつまることはなかった。宿自動車の運転関係者の、東京から旅中で冷えのため不調をきたしたものがあったが、発熱であたためただけで平発。高荷物の運搬等でかなりの荒作業を行ったが、負傷者も皆無。従って、用意の薬剤の大半は不用だった。

但し、今回の一同の被服は防寒上決して充分でなく、早朝数時間、戸外に出て働くのに、かなりの苦痛を感じた。先ず今度の程度の被服では、耐え得る程度として、あれ位がぎりぎりであろうか。若し -20°C 以下の場合、東海が僧、北薬で使用した様な、防寒外套、手袋、フェルト靴等がないと無理と思われる。充分暖房設備のある蓋所もほしいところである。こうした点も次回には考慮したいと思う。

8. 研 究 討 議 会

本実験期間中、1月20日及21日の二日全国地方の重要都市等の消防に関する、消防機器の製造業者の参集を乞い、研究討議会を開いた。各主な参集者らの注目。（順序不同、敬称略）

東京消防庁

大 川 機械部長 山崎 機械課長
研究討議会の様子

東京発動機
名取秋夫
森田佐治
宮坂和郎
長野計器製作所
箕浦務
宮川重一
渡辺行雄
損害保険料率算定会
熊谷一郎
高速機関工業
太田祐雄
小出長男
外3名
初田製作所
辻勝格
磯林透
三津橋工業
山枝昭吾

丸山製作所
高崎芳彦

愛知製業

近江 順蔵
加藤喜一

消防研究所

11名

兩日目、早朝にプール広場で各種実験を施行、それに引き続き、御幸館で討議会を開いた。

第1日（1月20日15時～17時）

主な発言下の通り。

（富塚）研究項目の概要説明、長野計器製作所製の感性起動機の紹介。

（大川）ゴムホースの耐塩性、起動燃料、起動時の気化器加熱等について質問。

（東京消防庁）チェーンを輪に巻くのは、積雪時には有効であるが、舗装道路や雨の日などは効果が薄いから、その対策を考えてみた。

（富塚）砂を少しを考えてたらどうか？

（大川）発動機の保険運用をすることをアメリカでは禁じている。日本ではまだないが行っている。

（富塚）シリンダーの塩耗はスタートの回数に比例するというが、アメリカでは実験になってる。（10年以上前のS.A.Eの誌上で見たことがある）保険運用をさせないというのは、こうした研究に戻るものと思う。スタートで塩耗の多いのは油膜が完全に形成されていないからである。スタートに光だち、油ボンプをかき、適温の油を充満させておけば塩耗はふえる筞で、それは飛行機発動機に適用してみたことがあった成績だった。日立航空で特許を取得している。オイルボンプにスピーカホイールの仕掛けをおき、発動機の回転と無関係に、外部からモーターでまわせる様にするだけである。自動車にもむろん楽な応用出来る。

（×××） 消防用として、特殊の事をするときには、自治体と消防とで、充分討議の上で製
造会社にかけある様にしたい。
(東京発動機機) 本朝、零下 9 度水温 +12℃
でしもんのどこかの発動機は 1 回で起動。油固
結の心配なし。但し、運転後放置すると 30分で
凍結。真空ポンプも凍結、トーチランプであろう
と 50秒でとける。エンジンの排気を吹きかけ
ても 30秒でとける。真空ポンプも約 30秒でとけ
た。このやり方で実用になると思う。
(北海道側) 次回の耐寒実験は、北海道でや
って貰いたい。零下 20℃ 位になるところは、
さらに有。積雪 3m 以上もあるときの機動性
について考慮を乞う。
第 二 日 (1月21日10時～11時30分)
(富士) 本朝の試験成績報告。小型 2 サイク
ル機器は今朝の溼度 (零下18℃) までのところ
では、完全に凍結は感じられない。但し、
浮かれるところ、気筒内へガソリンを注射の要が
ある。ポンプの中に前夜メチルアルコールを
注射しておいたところ、今朝全く凍結なく、ら
くに動く。一切の機関、導管等にこれを通
用したらいろいろ思う。アルコールの気化遊散が
問題だが、低溼の場合は相当長く止むと思う。
消光器のノズルに水が、凍りついてある場
合は、それをふせぐため、ノズルにグリセリンあ
たりをなすおおばあよ。
(問) 気筒内に注射するガソリンの量は、ど
れ位か？ また、メチルアルコールを注射し
て、凍結をふせぐ際、ガソリンをいためることは
ないか？
(富士) 注射量は約 1cc (気筒容積 160cc位
に対し) である。アルコールに注射し、大
抵何ともないと思うがしもすべて幕、高、アル
ミ＝＝ムに対する性質も、これは別で、航空の
方でいくらか問題になったことがある。
(水現) 昨夜メタノールの水溶液、15%, 20%
25%, 30%, 35%, 40% の 6 項を作り、試
験管に入れ戸外に放置。けさ -9℃ で、15%の
ものと 20% のものは凍り、試験管が割れた。25%
もののものは 1/3 が凍った。溶液は均一の状な
のだが…。30% 以上では大丈夫 (けさの最低溼
度 -12.5℃) ちなみに、アルコール水溶液の凍
結温度は 30% で -17.7℃, 40% で -27.5℃,
50% で -39.5℃ である。[従来公知のもの]
ホースの凍結防止用として、安価で効力のものは、
今のところ見つかなかった。ホースの中にたまった
水をとかすのには、あた、あるらしからさ。
(名倉) ゴムホースは、-12℃ 位では、ちつ
とも固くなる傾向はない。
(岩間) 不凍消火水は工事がまずないので、
地中温度を測った。15cm 以下は +4℃ で一
定であった。(雲の温度 0℃ 気温 -5℃ 時刻は
2時近くに於て)
(富士) 消火水は外につき出ていて、それが
外気で冷却されるから、それを設置したため、
地中温度の分布は、狂う苦である。それをしら
べる役がある。
(名倉) 沸剤の凍結防止のため、NH₄Cl を 9
%入れた。(餌和) 不凍剤入れのは -9℃ で平
気。ふつうのは -7℃ で凍った。不凍剤入れ
のも、-1℃ 以下では、膨力弱 (放射距離4.5m
内外、沸の呑むまでに 30秒内外を要する。全
部放射に 3 分位かかる (規格では1分) 保険して
-10℃ 位にしたものは平気。CCl₄ の消光器に
於ても、空中水分の発熱凍結の問題があるが、
思えたのが混することなし。
(高瀬) 火炎感知器の性能は -10℃～
+50℃ の範囲で誤報が出ないということにな
っているが、今朝 -12℃ に於て、接点の狂い全
くなく、誤報は出なかった。
(北海道) ポースは注水後、中の水をする
開もしくも凍結するので、大きく折って持ち運
び室でとかして、乾燥することにしているが、
退弁装置は、簡単な方法を確立を望む。
(富士) 加熱装置も今度持て来たのは失敗
だった。もっと簡単なのが出来そうだ。洗濯や
乾燥も、人手をあまりとらず、自動的に行くも
のを来年迄には間に合いたい。
9. 後 継 実 験
(4) トヨタ・モリタ・ポンピ導入車の故障修理
には約10日かかった。2月初旬登場して実験をや
つった。その結果は別項に記載の通り。
消消防研究所第二回火災実験総合報告

1. 論 言
昨年7月下旬に行った第1回火災実験に引きつぎ、第2回実験を1950年2月22日〜25日の期間に施行した。前回と同様、期間は4日。この中、最初の3日間を予備実験日、第4日目を本実験日とし、これを公開、一般来会者の参観をいただいた。今回は前回よりも更新に盛合せで来観者約150名。実験の概要を下のとげる。

2. 実験項目、その目的と要領
（a）土蔵の耐火性の研究。（屋外）（新）
きまってしまうので、その確立を目ざして前回以来研究破行中のもの。

主燃焼材は、約 45mm 角長さ 1m の木村を井桁に組んだもの、それに木毛をつめ、総重量 60kg それに点火して、重量の減少、上部温度、気流等を測定。（担当：検定係、発田、村上、池内）

（e）火災感知器の実地適用試験（屋内）（前
回のつづき）

前回は、8畳の日本間の天井に装置、その働きを試験したが今回は、講堂、映画館等の知り巨大な室に装置した場合の性能をしこべることが主目標。錠形屋根高さ約 90cm、面積約 600 平方米の工場の天井に、能美式火災感知器を装着。（b）項に示す実験と併せて、この試験を実行。（担当、電気係、内、長瀬、高満）

因みに電気による火災の初期現象の発見は、前回に引き続き今回も実験がなされたが、手が不充分であったので、今回は、これを割愛し、火災感知器一つに力を集中することにした。

（d）セルロイド火災のけし方。（屋外）（つづ
き）

セルロイド火災の性質は、化学的にはわかっ
ているが、どういう消し方が適切か？ 何か役
立たぬか？ という様々なことは一般に徹底して
ていない。専門人と難も、セルロイド火災の実
際をあらゆる観察してみる中、牛半、デモン
ストレーションの意味で、この実験を行う。今
回は、理研栽培会から多量の周フィルムをい
ただき、それで充分目的を達することが出来た。
場所は屋外、これに、各種の消火剤をかけて、
消え去りを見た。（検定、化学係、永瀬、秋田）

（e）階段に於ける火災気流の状況の観測。（屋
内）

火災時には階段は、絨毯の様に作用し火勢をつ
よめるということは概論的にはわかっているが、
きわめてことは判ってない、防火幕等で火勢
を阻止しようと企るも、これでは資料が不
充分だから、それを得る目的でこの実験を企画
最初はゆるい熱原によっての上昇気流を、微風
遮断等の手段により精査。各種の阻止策を適用

最後に全部を焼却の予定。（担当、熊野、新居）
（f）発熱気流撮影法（シュリーレン法）（屋
内）（新規）

シュリーレン法は、気流を目で見える様にす
る方法として有力なものであるが、これまでの
ものでは、大きなものを等そうすると、凹面
鏡かレンズの大きいものが必要で、装置が高価
にすぎた。今回のは、これに改良を加え普通の
レンズを使ってかなりの大きいもののが視野に
おさまることをねらう。（担当、田村）

（g）火災気流の速度測定。（屋内）（新規）

火災気流は、高湿度であると同時に、密度が低
いので、これを簡易正確にはかることは困難で
ある。前回の実験では、ビトーグ管を試みて、う
まく行かなかったので、今回は、発光微粉（ア
ルミ＝ユース粉）を火中に混ぜ、それを光学
的に追跡する方法をとった。シューターをおい
て光線を選び、その露出時間を一定にする。こ
うすると切れ切れの線を一つの線の長さが、気流
の速度に正比例するから、その線から、速度が
わかる。今回は、皿に盛ったアルコールの火で
これを実験し、一般にみせる。（担当、守屋）

（h）各種消防ポンプ、量水機等の運転。（屋外）

展示の機械は次の通り。

(i) 太田式、小型四輪消防ポンプ

4気筒、25hp、出流量、761/min

(ii) ジャイアント式、オート三輪ポンプ

水冷单気筒、18hp、出流量、5301/min

(iii) ルピノ式、小型可搬消防ポンプ

水冷 2 サイクル 2 気筒形給水式 7.5hp ポンプ

2 枚機ロータリー、出水量、2801/min

(iv) 日本オーバル工業会社製量水機

指針型の放水が2箇をみたロータリー型

量水機、誤差 ±0.5% 以内の精度をもつことを
特長とする。

（i）空気泡杯による消火。（屋外）

泡をつかっての消火実験には、ふつう 1 平方
米の油をめぐつつわずが、これはでは小規模に
失うので、今回大型の火をも用いて実験する
こととする。地表に直径約 4m の四隅を、
それに水を張り、ガソリンを浮べて実験。

（j）防炎幕の実験。（屋外）
防火幕として、金属箔板製やガラス布製のも
の等が提言されているので、その大体の効果を
見ることを目標として、これを全盤。（提供者
中野ハチ郎氏）

3 実験の経過

戸外実験が相当にあるので天候を案じたが、
連日好晴。但し、最初の3日は季節風がつよく、
屋外で火を焚くことには危険が感じられたが、
幸い、本実験日の25日は殆ど無風、正午頃ご
く軽い南風がふいただけだったので、屋外実
験には、持て余しであった。そのため、防火
幕の実験の知り、枠めて調律に行われた。

以下に、各項目の実験経過の大要を述べる。

(a) 土蔵

土蔵の壁を通じての熱伝達をしらべること
は、この実験の箇所の目標ではない。しかしそ
れを知っておくこと。比較の基準がとれない
ので、模型3箇の中、最初の1箇はこの実験に
あてることにし、公開日にこれを行った。熱
源は、石炭ガスで、これを多数のプレーン・バ
ーナーでし、壁の表面湿度、各室屋火
災の標準湿度にあわせ調節。この日の実験では

第1図 土蔵の模型にガス鍋を焚きつける

測温用サーモカブツに不備の点があったこと
をあらゆる障であった。しかし、土蔵の壁が健全で
ある限り、厚さ10センチ位であれば、内容物を保
護するのに充分であることが見當はついた。や
はり、裂け目か部分的過熟か、発火への主因
であるうという推定は実際の模である。

(b) 消火器性能試験用燃焼装置

前回の実験では木材の量が20kgにすぎなか

第2図 消火器試験用標準火災

れたが、今回は、50kgとしたので、火勢はかな
り旺盛であり、しかも、組み方で未梢であるの
で、内側の火は常に消しにくいことが確認出

来た。よって「この火を消さすには苛酷だ」
という皆な評も、消火器業者側から上ったそう
だが、実は消火の困難なことは、こちらのつけ
目なのである。まして、それをやってもくらいに
消せるなら、優劣をつけられないからである。
それでも、完全に消し切れない位の火勢と
し、その消しきれない火消減から、優劣をつけ
ようというのである。優劣は、燃焼阻止効果の
方からの数値的にきれるか否かである。

上部湿度や、熱気流速度等を測ることも、燃
焼阻止効果の判定に多少役に立つ。今回はその
測定も併せ行ったが、装置に欠陥があり、信頼
出来る数字を即時に、お目にかけることは出来
なかった。

(c) 火災感知器

前項の火により、壁面に作動し、こうした大
型建築に装した場合も、据付場所を適当に選べ
ば充分効果的であることが確認された。併せて
各部にサーモカブツをおき、温度上昇速度等を
測られたので、熱気流の進行の微状をもとつか
まえられた。これは、こうした建築物を感知器をつ
けるに当てて大いに参考になる資料であろう。

(d) セルロイド火災

一定量（1.5kg）のフィルムをとり、これに着
火約3秒後に消火を開始。その消え方をみたの
であるが、ガス消火器はいづれも完全に無効、
全く阻止効果はなかった。他消火器は多少有効、
水で殺急に冷却することが最効果的であること
第3図 セルロイド火災

が認められた。これにてをと、従来の消防器具設置の指導には従にして誤りがあったことが反省され、この実験も無意義ではなかったと思われる。

(e) 階段火災

今回の実験では、ストーブをおいてそれによくよい上昇気流を測った。その測定方法は、うまく行した。しかし、上昇気流は強く微弱だったから、戸外の風向きで容易に影響され、しばしば逆流になった。防火幕の実験は当日は間に合わなかった。

(1) シュリーレン法

今回の光源は800mm×800mmのトレーシングペーパーに縦に数多の黒線を引いたものをつけた電池で照した臨時のもの。レンズ（周遠鏡用かけ）直径50mm、焦点距離600mm、視野大さき400mm×400mm、映像大さき70mm×70mm。当日、模型家屋に熱気流が吹き当てる火災を表す。風に盛ったアルコールに点火して熱源とし、フレンズから側面から火を吹きかける。熱気流の行先は急にすくいあり、一般の見たとくを得た。前、この温度はかなり高く、人間の手とか、ひたたったとか、かたまりに、体焼して吹く気持ちを、そのままで、はつきり認められる程度であった。間に合せ装置でこの程度であるから、しっかりしたものを作れば、更に向上が期待出来る。

(1) 熱気流速度測定法

今回の実験では、アルミニウム微粉をアルコールの中に入れ、それが燃え、上って行く状況を見た。写真にうつすことでも成功。微粉の飛散の切れ切れの長さを寫真の方法にしたが、肉眼ではつかまることも大づかみには出来る。前、実際の火災のクレアの中には、火の粉がひとりでに混っているから、それを追いかけても成る程度見当はつくことを見出した。

ロビンソン型またはブリッタ型の風速計に水冷方法を施し、測定時だけつつきおきに使用外に出すことでも、実用性がありそうである。硬質磁器や、熔融石英でこれを作ることも考えられる。今回のは4翼プロペラ（翼長250mm）で交流発電機を駆動する型について冷却法を試みたが、正面に積が大きすぎ火の中にうまく入れ、す成功しなかった。ロビンソン型の方が正面に積の小点ではまるき。これに耐火性物で作ると冷却は成してもよさそうである。吸収能力の多い指示装置をこれにつければ、充分実用性がありそうに推定に達した。

(h) 各種消防機材の運転・展示

これは、単に普通の運転をして、お目にかけただけで、特に記することはない。
4. 結 論

以上に述べた如くで、今回もまた、費用の乏しかった関係で、充分予想的に大規模な火災の実験をすることが出来ず、大半が模擬実験に終たことを遺憾とする。「これらの大半は、大学あたりの研究室にしかあらわれた」という議論の出るのも、故にしかとしないが、大規模なものでは、何分にも金をくう。再々何えるもので

シュリーレン法や、熱気流測定法等にしても、大規模な火災実験の折、何かの役割をはせると考えて、実施ではあるまい。

仮に、前回の本火災実験に於て、最も力を入れた火災初期の発展現象の冠を今回も、はしり去ってしまったが、これは、必ずしも純アダミックでなくて、消防作業と関連して考えられるから、充分こちら向きの研究課題をといえる。今後も機会ある毎にこれを行う態勢。

しかし、その中の小しかけで出来る部分は出

ボンプ自動車の耐寒実験

遠藤景三・春名牛夫・中町昭己・須藤一雄

1. 緒 言

零下10度の酷寒に於ける消防機材の作動状況の観察及びこれが効果を研突すべく昭和25年1月20日長野県盛科で第1回耐寒実験が行われたが、これに参加したトヨタ森田ボンプ自動車について記する事にする。

2. 実験装置

ボンプ自動車の冬期の問題として考へられるのは、

(i) 始動の問題
(ii) 始動後冷却水凍結の問題
(iii) 主ボンプ間の凍結の問題
(iv) 油の粘度増大による機能低下の問題（例えば真空ボンプ、ガバナー等）
(V) 積雪地走行の問題
(vi) その他、ミッション、デフ等種々の問題

が考へられるが、準備が充分出来ず、次のような装備をした。

(a) 適応機各部の温度を測定するため、オイルランプ底部、油面、油調整器、5番シリンダー水冷、冷却水の発動機への入口及び出口、ラッシュグtrainer中央部、気化器下部10ケ所に熱電対を挿入し、18mvのmv計で測をとった。（第1図及び第2表参照）
(b) 発動機保冷用として、オイルランプ底部に750w、250w、120wのヒーターを、冷却水の方は700wのヒーターを用意し、第1報の如く種々の取付方法をとった。
(c) エーテル噴射装置を準備

これはトーチランプを改造し、気化器入口にエーテルを噴射し、低温始動せんとするものである。
第1表
水系統用ヒーターを挿入する方法

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ヒーター取付方法
- a. ヒーターのエンジン後部側を上げて取付ける方法
- b. ヒーターのエンジン後部側を下げて取付ける方法

取付場所
- A. 水ポンプ入口をドレンコック取付孔
- B. シリンダーよりの出口をドレンコック取付孔
- C. 一蓄レシリンダージャケットとドレンコック取付孔
- D. ヒードメーター取付孔及ドレンコック取付孔

第2表

<table>
<thead>
<tr>
<th>符号</th>
<th>溫度測定個所</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>第1番主軸受</td>
</tr>
<tr>
<td>2</td>
<td>オイルパン底面</td>
</tr>
<tr>
<td>3</td>
<td>オイルパン油面部</td>
</tr>
<tr>
<td>4</td>
<td>冷却水の発動機への出口</td>
</tr>
<tr>
<td>5</td>
<td>燃油調整器</td>
</tr>
<tr>
<td>6</td>
<td>水素器下部</td>
</tr>
<tr>
<td>7</td>
<td>五蓄レシリンダーウォーターポンプ</td>
</tr>
<tr>
<td>8</td>
<td>冷却水の発動機への入口</td>
</tr>
<tr>
<td>9</td>
<td>第2番主軸受</td>
</tr>
<tr>
<td>10</td>
<td>ラジエーター中央部</td>
</tr>
</tbody>
</table>

第1図 エンジン各部の温度の測定装置

第2図 傾斜基盤部の取付

第3図 ポンプ放熱防止装備
"ポンプの周囲をボディラミン板で囲った状態"
(d) バッテリー性能低下の場合は考慮して、
手動慣性起動器を準備して（第2図参照）
(e) バッテリー性能低下測定のため、D,C ボールトメーター等を準備した。
(iii) に対しては、第3図に示すようにポップ室を Al板で覆い、レバーを引きパイプスパルプを開く事により、臨時接ガスをポンプ室内に導入し得るような構造となり、高温度測定用の銅-コスタン熱電対を、ポンプケースに埋込む。
(V) に対しては、積雪地を防ぐ目的にチェーンをつけて走る場合の走行抵抗を、定ボースの N-HP曲線より算出したもの、マノメーター回紗計等を準備した。
(iv) に対しては、カバナーを装着（第4図参照）し、低温の場合の作動状況を調査せんとした。

3. 実験経過

今度の実験に使用した、トヨタポンプ自動車は何分か高めのため、24メートルよりの雪がや
れがるほど、ぼろが寄る寒さで、出発間際は
毎夜10時頃まで残業し、機械の耐寒実験をやる
前に、人間の耐寒実験を十二分に実施したかう
な格好だった。

楽科高原は海拔1800mで東京よりの道程は
可成り苦しく、発動機のオーバーヒートも考へ
られるので、走行中に発動機各部の温度測定す
る様定したが、メーター故障で往路は測定出
来ず残念であった。又ミッションとプロペラシ
ヤフトとの間にあるフレキシブルカプシング
のポルトを幾度も切損し難行したが、これは心
出しがうまく行わぬためであるから。

楽科高原附近は積雪して居り、チェーンをつ
けて雪坂した。相当な荷をつんでの長時間登坂、
老朽車で、しかも冬雪と悪天候が重なり、遂にメ
タール故障で、実験地を目的に엔フィし、1月20日
～25日の実験間に間に合わなかった。

茅野町での修理の後、2月7日実験地に着き、
色々実験せんとしたが、たまたま全国的な寒波
が襲い、滯在中夜の実験が一度だけ、他は、
+5℃、+8℃で雲を含む雨で、本格的実
験は出来なかった。研究所に帰ってからの補足
的実験をしたが、これも実験觸に合い不満足な結
果になった。

4. 実験結果及び考察

(i) 発動機冷却水をヒーターで加熱した場
合ヒーターを第1表の知く様々な方法で取付け、
各部の温度を測定した結果は、第5～第9図で
ある。各場合とも同一の実験所要時間が長い上
日数の関係もあり、天候その他の実験条件を一
様になし得なかったが、一応これで打切った。
これによって見ると、発動機各部の温度はそう
は上昇しない。それに気温が低くないため、第1
表のの場合を除き、各場合著しい差異は生じな
かった。しかし外気温が低いとか、風が吹いた
ときの保湿には悪い條件が出れば、もっと差が
出るものと考えられ、今後の補足実験にはラチ
エーターに風を当て実験する積りである。

何れにせよ、発動機全体の温度がそう上らない
ので、放熱の大なる處は矢張りラチエーターで、
従って効果的に保湿するにはなるべく湿っ
た冷却水をラチエーターを通過しないようなヒ
ーターの取付がよいわけである。この点より見
れば、A～n、C～a等がよいようである。（第1
表参照）

又実験結果より判ったのであるが、今度の実
B=b とせば、単にラチェーターの放熱実験を
しているだけの結果になると思う。更に冷却水に
ヒーターを入れても、ワット数が更に大切でない
限り、オイルバムのオイルの温度上昇はそし期待
出不来ない。

（ii） 油を加熱した場合

オイルパム最適部に取付けたヒーターに
より油を加熱した場合は第10図、第11
図である。750W の方は油温が 100℃ を突
破したので、実験を中止した。結果数10度

第6図 A-b の場合
（第1表参照）

第7図 B-a の場合
（第1表参照）

第8図 C-a の場合
（第1表参照）

ででない限り 750W は大いに失することであ
らう。高ヒーター表面の温度を熱電対で測
定した際、140℃ にもなり、この面よりし
ても恐心出来ない。

第11図は 120W の場合であるが、外気温が
9℃ であるのと考へ合わせ、冬期の場合はバリー
不足と思はれ、250W が手頃と思われる。

又本実験で何らかに、オイルヒーターより
エンジン各部の温度上昇は、そう期待出来な
い。

（iii）冷却水及油を同時に加熱した場合

冷却水を加熱した場合はオイルパム温度そう
上らず。油を加熱したのではエンジン各部温度
上昇期待出来ねので、両方同時に使用して見た。
結果は第12図、第13図である。

第12図は冷却水ヒーター 700W、油ヒーター 250W であり、今次実験唯一の零下の雰囲気のデータである。この場合の冷却水ヒーターの着熱法は第1表Dであり、第9図に示す如くこの着熱法はよくない。A-a、A-a 等に変更すれば、もっと結果がよくなる筍であるが、このデータは都合でとれなかった。

しかし第12図を見ると、各部温度上昇は、実際に発動機を運転した場合の温度上昇（第14図）に著しく接近して来た。これは発動機始動後約10分後の各部温度と大体似て居り、この状態で始動は容易であるよう。

第13図は冷却水ヒーター 700W、油ヒーター 120W の場合であるが、前にも述べた如く 120W ではパワー不足の感が深い。

第14図は発動機を運転した場合の各部の温度上昇を示したものである。これは現在各地で発動機運転が行われて居るが、この場合の各部の温度上昇を測定し、ヒーターで加熱した場合と比較せんたるものである。この場合の運転状況は、(A)線までアイドルランニング、それより(B)線まで約 200r.p.m 位回転数を上げ、(B)線より更に回転を上げ約1000r.p.m となし、(C)線.

第10図 の 油内ヒーター 鏡入の場合
油内ヒーター 700W

第11図 の 油内ヒーター 鏡入の場合

第12図
う。

尚、現在行はれて居る暖機延命は摩擦の原因となり、可及的運転回数を多くし、冬期は発動機保温の方法を講すべきである。所謂保温器を使用する場合は冷却水と油を両方を温める方が効果的であり、その容量は電力料、配線等を考へ、冷却水700W、油250W附近（或は冷却水にのみより大なるヒーターを入れ、その一部で油を温めるようにして可）が適當と思はれ、ヒーターの取付は特に注意する必要がある。油のヒーターについては、ヒーター表面温度が高くながらねやうになるべく太くて長い＝クロム線を使用すべきである。

(iv) 主ポンプの凍結の対策

主ポンプ関係の凍結の実験はトヨタポンプ自動車ではチャネスがなかったが、別報デアイアント三

たため、停止後⑥の温度が急に上昇して居るのは、ファンの冷却作用なくなり、下方排気管よりの熱を受けて上昇したものであろう。

尚、暖機運転後自然冷却の場合の各部温度下降の有様を調べたのが第15図である。この時の気温は大体6℃であるから、もっと寒くなれば、下降割合も大となり時間も短くなるであろう

輸消防車、オッタ消防車にて凍結状況を観察したので、その対策実験を行った。

これは第3図のようにして、アルミ板でポンプ室を囲に、中に排気を通じて、ポンプケースに埋込んだ熱電極で温度上昇を測定した。その結果は15図で、この時の実験条件は気温6℃自動車は停止中、発動機は低速であった。
第3表

時間	11時	12時	13時	14時	15時	16時
1	20℃	41℃	47.5℃	41℃	37℃	31℃
2	22℃	47.5℃	52℃	31℃	52℃	31℃
3	27℃	43℃	47.5℃	24.5℃	41℃	29℃
4	31℃	65℃	51℃	52℃	24.5℃	41℃
5	20℃	43℃	54℃	29℃	41℃	20℃
6	20℃	63℃	70℃	33℃	31℃	52℃
7	24℃	62℃	47.5℃	45℃	26℃	20℃
8	37℃	43℃	41℃	20℃	20℃	21℃
9	41℃	57℃	54℃	54℃	41℃	41℃
10	14℃	52℃	45℃	33℃	20℃	33℃

備考

ガソリン消耗量

使用自動車

前半...25.2.11-12

普通・大型、消防車

機関: 春名午夫記
消火栓（地上式）の不凍性に就て（第1報）

岩間 一郎・井上 慶胤

1. 緒 言

地上式消火栓はその構造上不凍性を有するものであるが、寒冷な地表温度に対しどの程度の不凍性があるか、言いかへばある寒冷な地表温度に対し地下何米迄水位を下げれば充分であるかを研究し、消火栓凍結の為給水不可能となることがあり得るかどうかを検討せんとするものである。但し消火栓内の水温を測定する為には特別の消火栓を必要とするので、之を来冬の耐寒実験に用いることとし、兹に既得実験として行った消火栓附近的地中温度の測定に関して簡単に報告する。

2. 消火栓附近の地中温度

a 測定の場所及び方法

地表温度が氷点下十数度下つても地中温度はなかなか氷点以下にならないのが普通であるから、消火栓が凍結するとすれば消火栓の熱挿導によってその内部が相當時深所迄冷却され達に氷点以下となる為で、附近の地中温度は他の場所と比較し同一深さに於てはやや低温を示すものと推定し、竜ヶ原所内建物北側の日照のすくない消火栓について、3月中旬の寒い日

條件競発し、ほんの豫備的実験に迄、所期の成果が得られなかったのはかへすれば、一時的であったが、ポンプ凍結の状況、発動機の始動、長距離ドライプ、積雪地の走行等貴重な体験を積んだ。今後これを土俵に更に実験を重ね所期の成果を得たいと思う。

尚、冷却水ヒーター取付位置については、ラ

ヒーターにファンで風を送り、発電の下に更に実験を進め、追って成果を発表する豫定である。
測定は第一図に示す如く消火栓よりの距離 4 番、9 番、14 番、24 番、34 番、及 54 番に於て、深さ夫々 5 番、10 番、20 番、30 番、50 番の位置について行った。5 時 30 分測定を開始し次表の如き結果を得た。

<table>
<thead>
<tr>
<th>距離（番数）</th>
<th>4</th>
<th>9</th>
<th>14</th>
<th>24</th>
<th>34</th>
<th>54</th>
</tr>
</thead>
<tbody>
<tr>
<td>深さ（番数）</td>
<td>5</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2.0</td>
<td>2.0</td>
<td>3.1</td>
<td>2.8</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>3.6</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>4.5</td>
<td>6.4</td>
<td>6.5</td>
<td>6.5</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>5.8</td>
<td>--</td>
<td>6.8</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

温度測定中の気温は次の如くであった。

5 時 30 分
6 時 00 分
6 時 30 分
7 時 00 分
7 時 30 分

-2.4 度
-4.0 度
-3.6 度
-2.6 度
+2.0 度

3. 結 語

以上の結果より消火栓附近の地中温度の等温線を描けば第 2 圖の如くになる。消火栓の外側の点の温度は測定できなかったが、この等温線より推定すれば同一の深さの他の場所より数度低い事は明らかである。従って消火栓内は更に低温を示すことが想像できる。以上は簡単な実験に過ぎないが消火栓内の湿度が表に接地温度の影響を受けることが推定できるので、総合に述べた如く未発の実験に於て、示め特殊の工作を施した消火栓を設置しておき、低地温度計及水銀圧測計によって消火栓内外の温度を測定して報告する所定である。

広い視野を有するシュリーレン法の研究

（第 1 報 総 論）

田 村 清

1. まえがき
2. 従来のシュリーレン法
3. 新しいシュリーレン法
4. 感度：点光源の場合
5. 感度：線光源暗視野の場合
6. 感度：線光源、中庸明度視野の場合

7. 定量的シュリーレン法
8. 絞り
9. D1 と D3 との比
10. 最 大 視 野
11. 新シュリーレン法による映画撮影
12. 製作及び調整について
13. 結 び
1. まえがき

流体の運動を表す方程式を一般的に解く方法は、今日に於ては未詳であつて、流れの研究には實験が不可欠となる。このために風洞、水槽等が使用され、定性的にも定量的にも多くの成果を得ている。しかし、火災の研究の基礎となる熱気流に関しては、定量的には未詳、定性的にも甚だ業績が少ない。その原因の最大なるものは一つは、流れる研究方法の適当なものが無く点にあると思われる。

シュリーレン法は、熱気流観測法として、従来より用いられて、その視野が狭い欠点があった。しかも、縮尺模型による実験と、実物との相違も不明であった。今回我々が考察したものは、比較的容易に極めて広い視野を得ることが出来るの故、今後の活用により以上の空所の幾分かを埋め得るものと思う。

2. 従来のシュリーレン法

シュリーレン法は、透明物体内の微小なる屈折率の変化を観測、測定に於て有効な方法である。従来の方法は幾つも長欠点を伴い、大口径の凸レンズ又は凹面鏡を必要とし、ある程度以上の広さの視野を得ることは實際上不可能であった。

第一図は従来の方法の一例である。光源Aから出た光は、レンズLにより像を結ぶが、此處に丁度その像の大きさの光障A'を置く。LとA'の中間にシュリーレンBを入れると、Bにより曲げられた光のみはA'にさえぎられない。此處に今一つのレンズL'を置けば、Bの像はB'に出来る。この時の背景は暗く、シュリーレンの像は明るい。

大体第1図と同様な装置で、光源としてナイフエッテで限られた面光源を用い、その像の位置にナイフエッテを置き、光源の像のごとく

部分を残すようにすれば、背景は中庸明度となり、シュリーレンは、光を曲げる方向により明るい、又は暗い像を作る。

従来の方法は大体以上の形式又はその変形であるが、凸レンズの代に凹面鏡を用いることもあるが、いずれにしても使用するレンズ又は凹面鏡より大なる視野は得られない。

この制限を超えたものとしては、凹面鏡を2ケ以上並用する法、影絵法等がある。前者は第二図に示す如きもののであって、視野をある程度拡げることは出来るが、その視野は不連続である。後者は第2図の如く、強力な点光源を用いてシュリーレンの影結を有する平面上に投影するものであるが、同じくも刺さるように、シュリーレンと投影面とを離さると、シュリーレンと像との形が相似でなくなり、近づけると感度が
悪くなる。また、写真を撮るためには、少なくともシュリーレンの大きさよりも大なる感光材料を、投影面として直接用いなければならない。さもなくば、投影された影絵を、更に写真に撮ることとなり、光源によっては強力なものを用いねば実用にならない。

3. 新しいシュリーレン法

第4図

第4図は新法の一単位を示す。光源Aからの光は、レンズLによって像を結び、光障A'にささえられる。シュリーレンBをAとLとの中間に入れると、Bにより曲げられた光はA'にささえられ、Bの像をB'に作り、この時光の背景は暗く、シュリーレンの像は明るいが、この場合にも、面光源を含む、その像の一部を光障より出せば、中庸明度の背景に、光を曲げる方向により、明るい、又は暗い像を得ることが出来る。

第5図

第5図で、一つの光源より発生するシュリーレンの濃さは、使用するレンズの面積よりも大分小であるが、第5図の知く、多数の光源を適当の間隔で列べ、之に對応するだけの光障を用意すれば、極めて広い視野を得ることが出来る。これが新しいシュリーレン法の原理である。

4. 感度：点光源の場合

第6図で、B上の小面積dBを、光源Aより望む立体角は、

\[
\frac{dB\cos^2\theta}{(D_1-D_2)^2}
\]

光源の半径をr、感度をλとすれば、dBを通過する光量は、

\[
\frac{\pi^2\lambda\cos^2\theta}{(D_1-D_2)^2}
\]

dBにて、微小角εにて、紙面と直角に、光を曲げたとすれば、これは光源が、

\[
\frac{\epsilon}{\cos^2\theta}
\]

移動したのに相当する。これによりA'外にそれる光量は、

\[
\frac{2\pi\epsilon(D_1-D_2)}{(D_1-D_2)^2}
\]

これがB'に作る像の面積は、

\[
\frac{AD^2\epsilon^2}{D_2^2}
\]

であるからその明るさは、

\[
\frac{2\pi\epsilon\lambda\cos^2\theta}{(D_1-D_2)^2} \cdot \frac{D_3^2}{ABD^2}
\]

A'の半径をr'とするとき、rはr'によって制限される。

\[
r = \frac{rD_1}{D_1'}
\]

7を6に代入して、

\[
\frac{D_3^2}{(D_1-D_2)^2D_2^2} \cdot 2\pi\epsilon\lambda\cos^2\theta
\]

8が一光源による明るさであるが、次に有効な光源の数を考える。レンズの半径をRとし、
その面積は \(\pi R^2 \) であるが、後に記す如く絞りを用いるので、2R^2 として計算する。光源の中心間隔は縦横共 4r とし、B 上の一点に対し有効光源長は、

\[
\frac{2R^2}{4r^2} \frac{(D_1 - D_2)^2}{D_1^2} = \frac{R_0 D_0^2 (D_1 - D_2)^2}{8r^2 D_1^2 D_2^2}
\]

9.

B' における明るさは、

\[
\frac{D_1^2 D_0}{(D_1 - D_2) D_0^2} \cdot \frac{2L \alpha \cos \theta}{8r^2 D_1^2 D_2^2} = \frac{D_1}{D_0} \cdot \frac{D_1'}{D_0'} \cdot \frac{\alpha L}{4r'}
\]

10.

レニンの焦点距離を t と \(t/2R = F \) とする。また、\(D_1 > f \), \(D_0 > f \) の場合には、

\(D_1' = D_0' = f \) と考えてよいから、これを 10 に入れて

\[
\frac{(D_1 - D_2)}{D_1} \cdot \frac{\alpha L \cos \theta}{4r'}
\]

11, 12.

紙の面内で、微小角 \(\varepsilon \) だけ光が曲る場合に

\[
\frac{\varepsilon}{2} \frac{(D_1 - D_2)}{D_0}
\]

となる。以下変化して、

\[
\frac{(D_1 - D_2)}{D_1} \cdot \frac{D_1'}{D_2'} = \frac{\alpha L \cos \theta}{4r'}
\]

10'.

\[
\frac{(D_1 - D_2)}{D_1} \cdot \frac{\alpha L \cos \theta}{8r' F}
\]

11'.

\[
\frac{(D_1 - D_2)}{D_1} \cdot \frac{\alpha L \cos \theta}{8r' F}
\]

12'.

5. 感度：線光源暗視野の場合

\[
\frac{2 \varepsilon L \lambda B \cos \theta \cos \eta}{(D_1 - D_2)^2}
\]

2'.

\(\Delta B \) にて、微小角 \(\varepsilon \) だけ、水平方向に光を曲げたとすれば、これは光源が、

\[
\frac{\varepsilon}{2} \frac{(D_1 - D_2)}{\cos \theta}
\]

3'.

移動したのに相当する。これをにより A' に外にそれる光量は、

\[
\frac{\varepsilon}{2} \frac{(D_1 - D_2)}{\cos \theta} \cdot \frac{2 \varepsilon L \lambda B \cos \theta \cos \eta}{(D_1 - D_2)^2}
\]

4'.

これが B' に作用する像の明るさは、

\[
\frac{\varepsilon}{2} \frac{(D_1 - D_2)}{\cos \theta} \cdot \frac{D_1^2}{D_2^2} \cdot \frac{\varepsilon L \lambda B \cos \theta \cos \eta}{D_1 \cdot D_2 \cdot \cos \theta}
\]

6'.

A' の幅は 2r' として、

\[
r = r' \frac{D_1}{D_1'}
\]

7'.

光源の中心間隔を 4r とし、B 上の一点に対

する有効光源長は、

\[
\frac{2R^2}{4r^2} \frac{(D_1 - D_2)^2}{D_1^2}
\]

9'.

B における明るさは、

\[
\frac{D_1^2}{(D_1 - D_2) D_0^2} \cdot \frac{D_1^2}{D_1^2} \cdot \frac{\varepsilon L \lambda R \cos \theta \cos \eta}{2r^2 D_1^2 D_2^2}
\]

10'.

\[
\frac{D_1}{D_2} = \frac{D_1'}{D_2'} \cdot \frac{\varepsilon L \lambda R \cos \theta \cos \eta}{2r'^2}
\]

11'.

\[
\frac{D_1}{D_2} = \frac{D_1'}{D_2'} \cdot \frac{\varepsilon L \lambda R \cos \theta \cos \eta}{4r'^2}
\]

12'.

垂直方向に曲げた場合には感度は無い。

6. 感度：線光源中庸明度視野の場合

この場合には、光障で、光源の像の半分を

\(2r \) に等しい場合と同様に考えてよい。

\[
\frac{\varepsilon}{2} \frac{(D_1 - D_2)}{\cos \theta}
\]

これから、
\[
e_{2} = \frac{\cos \theta}{D_{1} - D_{2}} = \frac{r'D_{2}\cos \theta}{D_{1}'(D_{1} - D_{2})}
\]

13 を 10° に代入し、

\[
(D_{1} - D_{2}) \cdot D_{1}' \cdot \frac{r'D_{2}\cos \theta}{D_{1}'(D_{1} - D_{2})} = \frac{\lambda R\cos \theta \cos \gamma}{2r}
\]

\[
= \frac{\lambda R\cos \theta \cos \gamma}{2D_{2}^{2}}
\]

\[
= \frac{\lambda R\cos \theta \cos \gamma}{8R^{2}}
\]

7. 定量的シュリーレン法

前節においては、\(e \) が小くなる場合の感度を計算したが、\(e \) が大なる場合には光源の幅よりも、3.3' 3° の移動の方が大となることが知る。このことも、隣の光源に影響する光障により光が堆積され、程度は薄くなる。一般にはこれはよく少ないから、このような場合には \(r' \) を増して、感度を下げて用いねばならない。

この現象の積極的な利用法として、定量的シュリーレン法がある。なるべく感度の高い装置で、強いシュリーレンを観測すると、ある経の二側に同数の線を現す。このときには、装置は従来のシュリーレン法における Schardin の方法の形をとられ、線の一端は、光の等屈曲線と名づけられる線である。この線は複雑なシュリーレンにおいては殆どその判別が不可能であり、簡単な場合にも、シュリーレン

の立体構造を想定して屈折率の変化の曲線を書き、これを図上で積分せねば屈折率曲線が得られないという、手数と不精確さはあるが、殆ど定性的ののみ利用されるシュリーレン法が、そのままで、定量的にも用いられるに通し異味がある。

8. 統一

線光源の場合に、一本の光源により得られる視野の幅は、

\[
\frac{2R(D_{1} - D_{2})}{D_{1}}
\]

20 となるが、この幅内での感度は必ずしも均等でなく、レンズ面の高さが、左右方向に分布しているかにより定まる。

像の一点についてみれば、これ等の等となるために、これもそのまでは像面全体に均等とはならない。しかし、光源の基準数は、

\[
\frac{2R(D_{1} - D_{2})}{4rD_{2}} = \frac{R(D_{1} - D_{2})}{2rD_{2}} = n
\]

21 により判るから、これだけの光源による感度が一定になるようにすることは出来ぬ。

この方法としては、1/n づつ相をずらして加え合せたときに、その和が一定となるような形の絵を、レンズに装置すればよい。ただし \(D_{2} \) は多少の変化を無感ぜさばならないから、\(n \) に多少の変化をする。このときにも感度に大きい変化を生じないものが欲しい。この条件を満す曲線を種々考え得るが、一例として \(n = 7 \) のものを第 8 圖に示す。BC 及び DE は直線、
AB, CD, RF はいずれも拡物線であって、上下の曲線は左右両端で互に接する。
点光源の場合には適当な方法が見当らないから、有効光源数を増して度数の不等を出来るだけ下げるより他はない。

9. D₁ と D₂ との比

視野の面積を B とすると、光源面の面積は、

\[\frac{B}{D₁^2} \]

で表される。

光源の消費電力を W とし、

\[\lambda = \frac{kW}{BD₁^2} \]

と仮定すると、11 は、

\[\left(\frac{D₁-D₂}{D₁} \right) \cdot \frac{kW}{BD₁^2} \cdot \frac{\varepsilon !}{4\pi} \cdot \frac{R \cos \theta}{4\pi} \]

\[= \left(\frac{D₁-D₂}{D₁} \right) \cdot \frac{k \varepsilon}{4\pi} \cdot \frac{\cos \theta}{4\pi} \cdot \frac{W}{B} \]

（第25項）を総べて最大とせねばならない。D₂ を一定として D₁ に関して微分すれば、

\[\frac{D₁^2}{D₂} = \frac{3D₁ - 2D₂}{4D₁^2} \]

故に極大の条件は、

\[D₁ = \frac{3}{2} D₂ \]

11. 12, 11, 12, 11, 12, 15, 16 のの式から出発しても同じ結論となる。 25

10. 最大視野

視野を制限する因子は二つ考えられる。

イ. レンズの包含し得る視界。

ロ. D₂ の大きさ。

いずれの設計及びカメラの構造により定まる。

ハ. は A' 面と B' 面とをどの程度まで接近させ得るかという機構の問題と、有効の有効本数とにより制限される。機構の問題には制限されないこととし、有効本数だけを取上げる。

視野全体をむらなく観測するためには、有効本数はまず 2 本を欲しけ。1 本を超えているならば、適当な絞りの設計は可能ではあるが、以

下には 2 本として計算する。即ち、

\[\frac{R(D₁-D₂)}{2D₁} = 2 \]

これに 7 を代入し、又 D₁ = t として、

\[\frac{R}{2D₁} = \frac{D₁}{D₂} \]

\[\frac{D₁}{D₂} = \tan \frac{R}{2D₁} \]

光源効率最大の場合は、

\[D₁ = \frac{3}{2} D₂ \]

として、

\[D₂ = \frac{12R}{2D₁} \]

光源効率を問題にしないならば、

\[D₁ \to \infty \]

とし、

\[D₂ = \frac{R}{4D₁} \]

となる。

11. 新シュリーレン法による映画撮影

今までは像面の大きさに関してもな全然問題にな
かったが、映画撮影の場合には像面の大きさが、標準の 85mm フィルムでも 18mm x 24mm に
限られる。しかし、新シュリーレン法では、R 及び f の大なるレンズを用いることが、性能向上の必要条件であり、視野を摂るためには視
角を大きく大きくとりたいから、必然的に視
面が広くなる。これは、映画撮影のために都
合が悪い場合であつて、この場合に用い得る方
法としては、B' 面にすり割子等のいわゆるビン
トグ拉斯を着き、これにより散乱された光を通
常の撮影機で撮るという、効率の悪い方法があ
るだけどと考えられる。B' 面の後方に適当な光
学系を置き、像の大きさを縮小して、しかも光
量は損しない方法があれば極めて好都合であるが、像を n 分の一に縮めることは、光学系の
焦点距離を、主レンズの f の n 分の一にするこ
とを意味し、結局光学系の F は主レンズの F'
の n 分の 1 なるわけであつて、このような
光学系を設計することは、通常は不可能である
。

--- 30 ---
12. 製作及び調整について

製作に際しては、

イ. A と A' を完全に合致させること。
ロ. 適当な光源を作ること。

の二つの要件である。

A と A' との合致は光学的に行う。これは二つのやり方がある。

a. 先ず光源を作り、装置全体を制定位置に据え、A' 面に乾板を置いて A の写真を撮り、現像の後 A' 面にあける。

b. 先ず A' 面を作り、その後に適当な光源を置いて之を A 面投影し、之に合せて光源を作り、次で撮影する。

いずれにしても、レンズの有する書面歪曲収差を自動的に補正出来る。

光源は、電球他の前にすり硝子、白粉等の散光材料を何枚か用いて、出来るだけ均等な面光源を作り、その前に適当な格子を置けば良い。但し、露出時間の短い寫真、連続寫真等を撮るためには、特殊な工夫が必要であると思う。

装置全体の調整のためには、前の b 法を應用して A と A' との合致を行う。このときに、A' に対しては高度の精密さが要求されるが、A に対してはそろでないから、調節は A の側で行えばやり易いことが多い。

13. 結び

以上の原理により、バラツキセットを一つ製作した。直徑 50mm 焦点距離 600mm の望遠鏡用色消レンズを利用し、光源としては60ワットの電球16ヶを並べ、その前にトレーシングペーパーを2枚張つれて、之に墨で線を引いた。視野は 40cm×40cm として、電気測定すべき成果を得たが、トレーシングペーパーの乾燥に耐えず、破れてしまったので、後にトレーシングクロームに代えた。

目下焦点距離 500mm F4.5 の寫真レンズを用い、視野 2mm×2mm の装置を設計、計画中である。之等については、今後報告する機会があると思う。

この時期は、今年 1 月下旬に行われた。

新研の消防器材耐変実験の副産物である。同実験を計画された宮崎技術課長及びこの考案と製作とを可能とした常研究所内の環境に深く感謝する。

高い天井面の異常温度変化について（第一報）

1. 緒言

高い天井をもつ建物に於ける火災時初期の天井面の温度変化は低い天井の場合と異なるであろうと考え、今回の火災実験でこの点について簡単な実験を行った。此の実験は未完のものでただ御粗末な結果しか出得ないので、更に水平方向の温度伝達速度、水平方向、垂直方向の温度変化窓の開閉影響等について、更に実験を重ねて行く事定であるが、その中間報告としてここに簡単に第 1 回の実験結果を報告する次第である。

2. 供試実験室の寸法構造及び温度測定点

中内俊作・巖澤重男・高瀬晋一

供試実験室は消防研究所内の建物の一部で所謂ノコギリ屋根工場と云ふ形をしたもので、その寸法及び構造は第 1 圖の如くである。測定点は全部天井面より 20cm～30cm 位下方である。
0.18mm）と反照検流計により行った。この測定
器全体としての時定数は3〜5秒と推定される。
熱源としてはヤグラ状に積みあけた木材の燃焼
によった。木材は総重量43.5kgであった。

4. 実験結果

各測定点の温度変化曲線は第2図の通りであ
った。各測定点における最高温度変化（℃/分）
及び最高温度を第3図に示す。将来は更に実験

3. 実験方法

温度測定は、銅一コンスタンタンの熱電対（直従

<table>
<thead>
<tr>
<th>凡例</th>
<th>例</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>銅一コンスタンタン先端</td>
</tr>
<tr>
<td>☐</td>
<td>電気流</td>
</tr>
<tr>
<td></td>
<td>銅一コンスタンタン</td>
</tr>
<tr>
<td></td>
<td>室内コード</td>
</tr>
<tr>
<td>☐☐☐</td>
<td>D-2L検流計</td>
</tr>
</tbody>
</table>

40℃ 50℃ 52℃ 54℃ 30℃
40℃ 52℃ 54℃ 30℃

39℃

入口
土蔵の耐火性に関する研究（第1報）

今津博

7. 試験の結果
（1）壁体の温度変化
（2）壁体の温度変化
（3）室内の温度変化
（4）室内の温度変化
（5）室内に置いた可燃物の変化

8. 受熱壁体の変化

9. 結語

1. 緒言

土蔵は火災に遭った場合、設計施工が良く管理状況が完全なら、大体耐火的なものとされて

![試験体断面図](image-url)
養生期間及び使用材料は次の如くである。

1月14日
竹組 尾竹半割及び雑竹
1月15日
荒塲 荒木田
土＋槇打ち
3日間 室内養生
14日間 屋外養生（日中）
2月1日
中塲 荒木田
土＋砂＋中荷
5日間 室内養生
10日間 屋外養生
2月16日
中塲及仕上 荒木田＋砂＋中荷 石灰＋サラシ柄＋角切

初期の養生期間中は、晴天の日は日中屋外に出し日暮れに屋内に搬入し、雨天、降雪、特に寒気の激しい夜は電熱を入れたり、薪を焚いて凍結防止、乾燥の促進を計った。

3. 加熱装置（第2図）

熱源にガスを用いることとして、口径11mmのプロパンバーナーを図の如く3ヶ配置した加熱板を作り、この支持雲の下にコロを置いて2分毎に左右に移動し、平均に熱があたるようにした。左右及び上部の試験板と加熱板の間隔は鉄板を張った鋼板及び鉄板でふさぎ熱の逸散を極力防止するようにした。

試験板と加熱板の間は約2cm離し放射するガスが充分に試験板にあたるようにした。またバーナーを固定した板は加熱中に燃や出すので耐火塩を塗って置いた。

バーナーの空気調節は加熱中各バーナーにつきその都度行つたが、加熱が進むにつれてあつくて調節が充分に行えなかった。これが加熱温度の調整を充分に行い得なかった原因にもなった。
4. 気象状況

試験当日の気象状況は、曇天ではあったが無風に近く屋外での実験には好都合であったが、2時30分頃から小雨となり次第に本降りとなりました。その間試験体及びメーターには激烈な屋根をうけ、濡れるのを防ぎました。

詳細は次の如くである。

風速（第3図）始めるうちは西北西の風1m

位置であったが、次第におとろえ12時頃にはほとんど無風となり、後北西の風に変わった。

気温（第4図）試験開始の11時頃には13.6℃で次第に下り、18時には11.5℃となった。

5. 試験方法

前述の試験体の一方向の壁面よりガスで加熱し
次の事項を測定した。又受熱壁の反対側の壁に内側をガラスで張り、外側に鉄板の枝をつけた観測孔があり、室内に 100V60W の電球及び 6V の電池 2 個をつけた 2 種の光源をもうけ、2分毎に鉄板の枝をあけ 2 種の内何れかに点壁し内部を観測するようにした。
(前回は 6V 電球のみを用いたが、途中で電球が切れたので今回は無線として 2 種類の光源を入れたのである)。
（1）壁体の温度変化
鋼（0.85mm）コンスタンタン（0.18mm）長さ 3m 冷接点には繊絨に水を入れた熱電対を第 1 圖の如く 1, 2, 6 を壁厚内 3, 4, 5 内壁面と 6 へ所に配置し、ミリポルメーターにより温度を測定した。又補助的意味として赤 70℃ チョコレートのサーモカラーオを内壁面に塗っておいた。なお内壁にも梯度が塗っているので、アルカリ性を中和させる為水酸性の腐食液を塗って塗ったものと内壁面に紙を貼ってその上にサーモカラーオを塗ったものと、そのま 1 塗ったもの 13 種を試みたが結果はいずれも良好であった。
（2）室内の温度変化
第 1 圖の点 7 に前と同様の熱電対を天井から吊した棒にてて置きミリポルメーターで温度変化を読み、棒には一面に前事のサーモカラーオを塗って置いた。又 150℃の水銀棒状温度計を 7 点と各面の同一の点に固定させ、サーモカラーオの変化と同一 2 分毎に観測孔より見た。
（3）室内の温度変化
試験体は相当日数大気中に放置して置いたのだが、ただ壁体内に残存水分が始まる見込んだため、乾燥による温度を見る事により 1 週間毎毛髪同種温度計を室内に入れて置き温度の変化を測定した。
（4）室内に置いた可燃物の変化
第 1 圳の如く加熱壁に接触させて 30×15×9cm の木席 2 個、紙 2.7kg、ポロ紙若干を入れて置いた。

6. 加 熱 状 況（第 6 圖）
當初は大気を整想し 300℃ ～ 400℃ を約 10 分間持続させ後木造火災温度を 3 回繰返し、又 700℃ を 15 分持続させ全室で 70℃ 加熱する様にであったが、加熱装置の童様と居外で実験を行った結果は得られず、圖の如き加熱状況となった。然しごは N. F. P. A. の耐火試験温度曲線の 1 時間以内の曲線にほんと一致している。加熱温度の測定は、白金・白金 50% シリコン熱電対（北辰電気製高湿度 0℃ ～ 1600℃）で 2 個の測定値の平均で測定点は中央とその上方 27cm の所である。

7. 試 験 の 結 果
（1）壁体の温度変化 I（第 7 図）
第 7 圖の 1 ～ 5 の曲線（6 は試験開始後間もなく故障し測定不能となる）が壁体各部の温度変化を示す。点 1 の温度は受熱後間もなく上昇を始め 30 分で 95℃ に昇り、以後はほとんど平衡状態を保ち、熱源を切る頃になって最高の 98℃ に達し下降している。これは壁中の水分が
急速に脱水したが、結局熱源を切る頃になっても完全に脱水しきれずにはいたからではないかと思われる。加熱を続けなければ脱水も進み、完全脱水後には、更に温度の上昇が見られたと思ふ。その他の点も熱源を切る頃最高温度に達しているが、その持続時間は短く温度も低い。

内壁に塗ったサーモカラーは加熱後85分位で上部に変色が見られ、次第に下の方に移動して50分頃に熱電対による測定点の附近が変色を始めていた。壁面の温度が高さにより時間的に相違があるといふことは想定して得ることであるが、サーモカラーによるだけで熱電対による測定を行ってないので、最高何度まで昇ったかデータの取れなかったのは明に失敗であった。

第8図 測定温度曲線

（2）壁面の温度変化 II（第8図）

前回（2月25日）の実験で試験体に5日後（3月2日）改めて同一面に加熱したが、その結果が第8図である。この場合には受熱面の1.2.3の3点のみの測定しか出来ず、加熱時間も22分で加熱状況は第6図の最初の22分に相当している。測定用熱電対その他すべて今回と同様のものを使用している。この場合一度70分にわたって加熱し相当程度脱水した面に、更に加熱したのであるから、含水程度は少しだが相当に変質していったものである。

温度の変化は加熱前に1.0℃で22分で熱源を切る頃になっても1が3.0℃2.8の点はほとんど変化なく、最高温度になったのが,
1. 80分で 52.0℃
2. 92分で 48.7℃
3. 105分で 29.5℃

で、熱源を切って後相当時間たつてから最高温度に達している。なぜ当時の気象状況は2月27日が快晴で、3月2日までの間風はなく晴天の日が続いていた。3月2日も晴天で北西の風が3m/sec 位吹いていた。

（3）室内的温度変化（第7図）（第9図）

7の曲線は室内的温度変化を示す。試験体を
握つけたのは開始前約10分なので、実験開始時
の室温は18.6℃で外気の温度と同じである。壁
体は12.0℃）加熱後57分頃に7は3（受熱内壁
面）より高温となっている。この原因としては
次の事項が考慮される。

1. 壁体が非常に不均質性で、測定点が丁度その
不均質な所にあたっていた。
2. 受熱内壁の温度上昇が急で、差異あり
測定点より上の方、早く高温になって
いた。
3. 内部観測の箇所をつけた60Wの電灯が、点灯
時間は僅かであっただが熱源となった。
（60Wの方は始めの間で、後には大体6V
の豆電球を使用した）

以上であるが、その
うちで1と2は可能
性がないと考えられ
る。熱電対を固定
させて置いてある壁
の表面で最も温度高かった部分
前記のサーモカラー
を塗っておいたが、
その時の温度変化
状態は第9図の如くであ
る。

水銀寒暖計の結露
防止の用意をうまく
塗っておいたが、40
分頃より水滴の為観
測不能となったので
中止した。之は補助
的に入れておいたものなので実験の進行上には
差支えなかった。観測孔内側に張ったガラスに

も油をうすくひいいておいた為結露したので、40
分頃に之を割り、その上にドレンチウォーター
を塗ったガラスを新に張った。結果は良好で最
後まで結露は防げたので、寒暖計もはじめか
らこれを塗っておけばよかった。

（4）室内的温度変化（第5図）

毛髪自記温度計の一週間巻を用いたので、余
り正確は期待できないかも知れないが、加熱後間
もなく上昇を始め、80分頃には最高の86.4%に
なり、もも僅か下降して2時頃に95.0%とつな
いでその後継続している。然し内部に露滴が表
現し多數浮遊していたから、最高は90%になったも
のと考えられ、この差は計器の誤差であろう。

（5）室内に置いた可燃物

木箱ポリ袋、共に何等異常なかったが、紙
の壁面に接触していた部分が幾分変質していた
（さわめてみた、多少ガスガスする位）程度であ
る。

8. 受熱壁体の変化

受熱壁面は加熱後9分で表面の変漆に変更例が
入り、次第にゆるく上って来て18分で中央から
一部にかけて脱落を始めた。中塗は変色し相当
に変質していたが、更に深い色塗の部分はほと
んど変色・変質をして居ないが、初め表面を
から2.5cmまでは炭化したり変色をしていた。
骨組の竹には異常が無かった。

他の壁面はほとんど変化なく、両側上部の加
熱面に近い所に幾分変質が入った所が、上部の
塗のためな所が幾分はかけり、変質をしていた程
度であった。

加熱板のバーナーの配置が粗かったので、加
熱状況が部分的になるかを心配したが、左右に
バーナーの間隔の半分だけ移動して行ったので、
変色状況は下部の値を除いてはほとんどと一緒で
あった。

9. 結 語

今回の実験で上部の様に塗りの不均素材で密
閉した建物が火熱を受けた場合の、壁体及び室内
の変化に対する基礎的資料を得ることが出来た。
今回の供試体は作製後日が浅く、壁体にな
相談の水分が含まれていた模様である。この種の実験では作製後少くとも半年以上経たものでないと、水分が多くて実際の土壌表面と農業条件が遊い、好ましくない。

土壌は気密に保たれるのであるから、直からの蒸発が無くても、室温が高温になった時水分が蒸発する物（如水の知きもの）を置けば非常に関有効である。然しその水の置き方にはどんなものが有効か、今後はその試験もしてみる心構えである。

受熱壁体の温度上昇は急さにより非常に差があり、火災の場合は特にその差がはげしいので、実際の土壌も壁体の上部・軒等熱の箇所にある部分が弱点となる可能性が多い。室内も場所により温度差がはげしいので、内部の温度を調節して対流を阻害することができれば、部分的に炭化を促進する原因となり好ましくないと考える（この場合の対流は上下より壁面と室の中央方向に対して行われる方が多い）。又壁体特に高部分に可燃物を密着させることは好ましくないと思ふ。

土壌が古くなっていると、火災にあった場合、塗装の脱落はその場合より早く、殆ど全面的にになると、欠陥が無ければ中塗の優良程度で、下地にまで異常を来すことは、先づいと思われる。

高熱を受けた土壌の室内温度は伸々下らないものであるが、本実験の室内温度は加熱後8時間で36.8℃（大気温度11.3℃）12時間で24.1℃（大気温度10.3℃）であった。

長年月たった土壌の壁体には懸念にして創があつたり、金物が打ち込んであつたりする場合。
能代火災における土蔵の被害について

今津博

代市消防局常備消防部の皆さんに厚く感謝する次第である。

1. 調査カードの配布と回收

配布カード数 305枚
回收カード数 274枚
不備カード 13枚

調査方法は現地で土蔵の位置及被害の程度を縮尺1:3000の地図上にプロットし、総京後別の地

2. 被害状況

図12表に示す通り、能代市常備消防部の

目的の災害及び被害

3. 被害状況（第12表）

整備カード261枚中

無被害 33棟 12.6％
小被害 59棟 22.6％
中被害 17棟 6.5％
大被害 152棟 58.3％

但し無被害：外壁の剥落、屋根の破損等

被害：壁土の一部剥落、屋根の破損等

使用出来るもの。
損害を受け、修理使用の出来ないもの。

大被害：壊滅又は牛破し、修理出来ないもの。

大体に於て無被害、小被害の土蔵が収納物保護と云ふ土蔵本来の使命を果たしたものである。大火災後土蔵の助かつたと云ふのは、大体半分位が普通であるが、能代市の場合、僅かに35.2%である。これは回収に當り、未回収のカードの中に小被害の土蔵が比較的多くかつ出たからではないかとも思われるが、それにしても大半が土蔵自身壊滅し、又収納物も同に無に歸せしめてしまった。

4. 用途別被害（第1表）

倉庫221棟（84.6%）住宅26棟（10.0%）住宅兼倉庫14棟（5.6%）で土蔵としては倉庫に用ひられるのが最も普通であるが、40棟（14.4%）が住居の用に供されていたのは、能代が震災後大変に見舞われているからであるろう。

倉庫に使用していた221棟中

無被害 28棟 1.26%
小被害 54棟 2.44%
中被害 15棟 0.68%
大被害 124棟 56.2%

となり、収納物保護の目的を達したもの、221棟中92棟87.0%で、倉に1/3に過ぎない。

5. 使用年数と被害（第1.2表）

使用年数では21～30年のものが最も多く41～50年、81～40年……の階になっている。61年以上の土蔵は37棟あり、この中には250年余も使用していたものもあった。之等は度々の火災にも焼残したものであった。大被害を受けたものは21～30年が一番多く、無被害、小被害のものもそれに同数あり、大体半数は安全であった。然に31年以上になると、105棟が使用不能の大被害、中被害を受け、50棟が安全であったから1/8位しか安全を保ち得なかった。これは設計施工が良ければ置くことから30年位は余りひき傷み方をしないが、それを過ぎた次第に大きな故障箇所が出来て、修理をしなければならなくなる。61年以上経たものが9棟も安全だったのは設計施工の良かった事は勿論だが、手入が良く行わせていたからである。能代は雪崩で約半千人は雪に閉させられているから、他の醸造地に比すると障害の出るのが幾分早いとは思ふが、年々の修理は勿論大体30年を経た土蔵は、大修理期が近づいたと思って差支えない。

6. 倉庫使用土蔵被害（第8表）

倉庫に使用されていた土蔵を更にその使用目的により分けると、一般家庭の家具類を収納する用に供していたもの、221棟中150棟67.9%商品等を入る為の純然たる倉庫が35棟15.8%兩方兼用に用いていたものの36棟16.3%である。その各の被害率は、家具用の倉庫は150棟中75棟50.0%純然たる倉庫は35棟中22棟62.8%が大被害を受けている。これは能倉庫に比し一般家庭用の倉庫の方が所有者の目的にふれる機会が多く、故障箇所もそれだけ早く発見され、修理が比較的よく行わされていたからと思われる。

7. 既往の災害と被害（第4表）

既往の災害は1回と云ふのが173棟66.2%で最も多く、これは昭和14年5月1日に地震が有ったからで、既往の災害なしと云ふのは、震災後に建てたものである。大半は各被害回数の内大災に遭ったのは1回ずつ少なくなる。即1回のものはなし、2回のものは1回と云ふことになる。

被害状況は災変に遭った回数に比例して、大被害の率が多くなっている。同数が成程度以上になると、それにつれて大被害の多くならないのは、数多くの火災に耐えた土蔵自身の優秀さと、手入の念を示すものであろう。

8. 防火措置と被害（第5表）

土蔵が火災に遭った時は、内部に置水をするとか、開口部に目隠しをするとか、何等かの防火措置をするのが常識であるが、非常の際は善々にしてこの措置を忘れるものである。今次の大

* 昭和14年5月1日以降建築の土蔵で火災に遭ったものはなかった。
災では261棟中155棟59.4％の土蔵に防火的措置を講じたが、98棟37.6％は何等の措置もなされず、扉の閉されていないものもあった。

防火措置としては、置水筒を設けたものの72棟27.6％設置したものの44棟16.9％、火災が起きたものの39棟14.9％、これも被害別に見ると、無被害32棟（不備1）の中23棟72.0％は防火措置をしており、その内11棟34.4％は置水も目指してあった。無被害と小被害のうちでは77棟74.5％が防火措置を行っており、防火措置を何もしていないで大被害をうけたものは全体で74棟37.1％あった。又置水をしてあって被害を受けたもの（大被害と中被害）29棟中21棟72.5％は水の量が3斗以下であった。

9. 大被害土蔵の発火時刻と

防火措置（第6表）

防火措置のないものの74棟中66棟48.7％は周囲に火を受けてから30分以内に内部に火が入って

<table>
<thead>
<tr>
<th>倉庫</th>
<th>計</th>
<th>1011〜2021</th>
<th>2021〜3031</th>
<th>3031〜4041</th>
<th>4041〜5051</th>
<th>5051〜6061</th>
<th>不備</th>
<th>小計</th>
</tr>
</thead>
<tbody>
<tr>
<td>無被害</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>小被害</td>
<td>0</td>
<td>7</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>12</td>
<td>54</td>
</tr>
<tr>
<td>中被害</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>大被害</td>
<td>4</td>
<td>20</td>
<td>26</td>
<td>19</td>
<td>14</td>
<td>16</td>
<td>2</td>
<td>124</td>
</tr>
<tr>
<td>計</td>
<td>5</td>
<td>35</td>
<td>55</td>
<td>36</td>
<td>34</td>
<td>18</td>
<td>35</td>
<td>221</td>
</tr>
<tr>
<td>比率%</td>
<td>2.4</td>
<td>15.9</td>
<td>25.0</td>
<td>16.3</td>
<td>15.5</td>
<td>8.1</td>
<td>15.2</td>
<td>100.0</td>
</tr>
<tr>
<td>比率</td>
<td>84.0</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

第1表 用途別、使用年数別被害

<table>
<thead>
<tr>
<th>住宅</th>
<th>倉庫</th>
<th>計</th>
<th>1011〜2021</th>
<th>2021〜3031</th>
<th>3031〜4041</th>
<th>4041〜5051</th>
<th>5051〜6061</th>
<th>不備</th>
<th>小計</th>
</tr>
</thead>
<tbody>
<tr>
<td>無被害</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>小被害</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>中被害</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>大被害</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>計</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>261</td>
<td></td>
</tr>
<tr>
<td>比率%</td>
<td>14.3</td>
<td>14.3</td>
<td>21.4</td>
<td>42.9</td>
<td>7.1</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>比率</td>
<td>5.4</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

く、置水したものには6時間もたって

1. 大被害土蔵の出火原因（第7表）

発火の過程で最も普通と思われるのは、周囲の可燃物の猛烈な燃焼の為、内部の温度が上昇し、発火しつつあったものが多い。152棟中49棟82.2％がそれであり、不明12棟27.0％も、その内に含まれるものだと思う。窓の不完全、屋根よりの引火、扉等開口部、等は構造上の弱点を示すも
のであり、他は皆不注意の原因となるものである。

11. 結論

以上の調査により、防火上注意すべき点として、次の事わが私へされることである。
1. 火災後30年位経過して、大きな故障箇所が出て来る。年々の修理は勿論30年位たら一応念入った注意を以て修理をする必要がある。
2. 日常用品を入っている倉庫は比較的目につき易いので、注意が行届くが、他の倉庫も余り放置せずに年に一度位は見直し、修理する事が必要である。
3. 倉かの汚され事のある場合で大事を起こすのである。故障箇所を発見しても、修理すると廃棄に数える等と考へ、無事に放置して置かれた人があったようだ。
4. 火災時に燃料のおそれある時は、可燃物を余り大量に入れないで、内部には少なくとも4斗以上の灌水をし、開口部、窓、軒等には入念に目をける。
5. 倉庫の周囲に大量の可燃物を置く事は危険である。
6. 一窓をなした倉庫は焼失しに大いに役立つ。その被害程度も、散在するものに比し軽微のものが多い。
7. 造造は結論を得なかったが、壁厚8寸以上屋根厚5寸以上のものに無被害が多くかった。又開口部は観音扉だけのものは効果少く、2重戸はそれ以上にするといい。

第2表 使用年数別被害

<table>
<thead>
<tr>
<th>10年</th>
<th>11〜20年</th>
<th>21〜30年</th>
<th>31〜40年</th>
<th>41〜50年</th>
<th>51〜60年</th>
<th>61〜</th>
<th>不備</th>
<th>計</th>
<th>比率 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>無被害</td>
<td>1</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>33</td>
</tr>
<tr>
<td>小被害</td>
<td>0</td>
<td>8</td>
<td>22</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>13</td>
<td>0</td>
<td>59</td>
</tr>
<tr>
<td>中被害</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>大被害</td>
<td>4</td>
<td>23</td>
<td>30</td>
<td>29</td>
<td>34</td>
<td>14</td>
<td>17</td>
<td>2</td>
<td>192</td>
</tr>
<tr>
<td>計</td>
<td>5</td>
<td>39</td>
<td>62</td>
<td>44</td>
<td>53</td>
<td>19</td>
<td>37</td>
<td>2</td>
<td>261</td>
</tr>
</tbody>
</table>

比率% | 1.3 | 14.9 | 23.7 | 16.8 | 20.3 | 7.3 | 14.2 | 0.8 | 100.0 |

第3表 倉庫の使用別被害

<table>
<thead>
<tr>
<th></th>
<th>家具用</th>
<th>純倉庫</th>
<th>縦用</th>
<th>計</th>
<th>比率 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>無被害</td>
<td>23</td>
<td>4</td>
<td>1</td>
<td>28</td>
<td>12.7</td>
</tr>
<tr>
<td>小被害</td>
<td>42</td>
<td>8</td>
<td>4</td>
<td>54</td>
<td>24.4</td>
</tr>
<tr>
<td>中被害</td>
<td>10</td>
<td>1</td>
<td>4</td>
<td>15</td>
<td>6.8</td>
</tr>
<tr>
<td>大被害</td>
<td>75</td>
<td>22</td>
<td>27</td>
<td>124</td>
<td>56.1</td>
</tr>
<tr>
<td>計</td>
<td>150</td>
<td>35</td>
<td>36</td>
<td>221</td>
<td>100.0</td>
</tr>
</tbody>
</table>

比率% | 67.9 | 15.8 | 16.3 | 100.0 |

--- 43 ---
第4表 既住の災害と被害

<table>
<thead>
<tr>
<th>無被害</th>
<th>1回</th>
<th>2回</th>
<th>3回</th>
<th>4回</th>
<th>5回</th>
<th>6回</th>
<th>7回</th>
<th>8回</th>
<th>9回</th>
<th>10回</th>
<th>総計</th>
</tr>
</thead>
<tbody>
<tr>
<td>無被害</td>
<td>22</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>33</td>
</tr>
<tr>
<td>小被害</td>
<td>42</td>
<td>11</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>59</td>
</tr>
<tr>
<td>中被害</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>大被害</td>
<td>99</td>
<td>24</td>
<td>13</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>計</td>
<td>173</td>
<td>42</td>
<td>18</td>
<td>13</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>261</td>
<td></td>
</tr>
<tr>
<td>比率%</td>
<td>1.9</td>
<td>66.2</td>
<td>16.1</td>
<td>6.9</td>
<td>5.0</td>
<td>2.7</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

第5表 防火措置と被害

<table>
<thead>
<tr>
<th>防火措置あり</th>
<th>防火措置なし</th>
<th>不備</th>
<th>総計</th>
</tr>
</thead>
<tbody>
<tr>
<td>無被害</td>
<td>11</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>小被害</td>
<td>25</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>中被害</td>
<td>7</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>大被害</td>
<td>29</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>計</td>
<td>72</td>
<td>44</td>
<td>39</td>
</tr>
<tr>
<td>比率%</td>
<td>27.5</td>
<td>16.9</td>
<td>14.9</td>
</tr>
</tbody>
</table>

第6表 大被害土著の発火時刻と防火措置

<table>
<thead>
<tr>
<th>時間後</th>
<th>0.5〜1.0</th>
<th>1.0〜1.5</th>
<th>1.5〜2.0</th>
<th>2.0〜2.5</th>
<th>2.5〜3.0</th>
<th>3.0〜3.5</th>
<th>3.5〜4.0</th>
<th>4.0〜4.5</th>
<th>4.5〜5.0</th>
<th>5.0〜6.0</th>
<th>不備</th>
<th>総計</th>
</tr>
</thead>
<tbody>
<tr>
<td>置水目廃</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>置水</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>目廃</td>
<td>2</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>措置なし</td>
<td>36</td>
<td>19</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>74</td>
</tr>
<tr>
<td>不備</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>計</td>
<td>54</td>
<td>35</td>
<td>11</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>152</td>
</tr>
<tr>
<td>比率%</td>
<td>35.5</td>
<td>23.0</td>
<td>7.2</td>
<td>5.4</td>
<td>5.4</td>
<td>3.9</td>
<td>2.6</td>
<td>0.8</td>
<td>2.6</td>
<td>1.9</td>
<td>0.6</td>
<td>11.3</td>
</tr>
</tbody>
</table>

--- 44 ---
第7表 大被害土蔵出火の原因

<table>
<thead>
<tr>
<th>延 燃焼熱</th>
<th>50</th>
<th>3.29%</th>
</tr>
</thead>
<tbody>
<tr>
<td>家屋</td>
<td>43</td>
<td>28.3%</td>
</tr>
<tr>
<td>草屋</td>
<td>1</td>
<td>0.7%</td>
</tr>
<tr>
<td>樹木</td>
<td>6</td>
<td>3.9%</td>
</tr>
<tr>
<td>建造物の欠陥</td>
<td>46</td>
<td>29.6%</td>
</tr>
<tr>
<td>桧板</td>
<td>1</td>
<td>7.2%</td>
</tr>
<tr>
<td>間口部（除穴）</td>
<td>17</td>
<td>11.2%</td>
</tr>
<tr>
<td>ひさし</td>
<td>15</td>
<td>9.9%</td>
</tr>
<tr>
<td>不注意</td>
<td>16</td>
<td>10.5%</td>
</tr>
<tr>
<td>境土の制御</td>
<td>7</td>
<td>4.6%</td>
</tr>
<tr>
<td>炎消去法</td>
<td>6</td>
<td>3.9%</td>
</tr>
<tr>
<td>土蔵内に持ち込む物</td>
<td>2</td>
<td>1.3%</td>
</tr>
<tr>
<td>土蔵内に持ち込む物（時に火が入る）</td>
<td>1</td>
<td>0.7%</td>
</tr>
<tr>
<td>不明</td>
<td>41</td>
<td>27.0%</td>
</tr>
<tr>
<td>計</td>
<td>152</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

龍火災焼失区域内外土蔵調査

<table>
<thead>
<tr>
<th>土地所在地</th>
<th>所有者氏名</th>
</tr>
</thead>
<tbody>
<tr>
<td>区 分</td>
<td>記 入 構 建 考</td>
</tr>
<tr>
<td>3 用途別</td>
<td>土蔵を住宅として使用していたか、店舗として使用していたか、倉庫として使用していたか</td>
</tr>
<tr>
<td>4 建築年数</td>
<td>土蔵を建設から今度の火災までの何年になるか</td>
</tr>
<tr>
<td>5 建造概要</td>
<td>被害前の現状、開口部、堆積物等の状況及びその土蔵を襲った所があれば記入</td>
</tr>
<tr>
<td>6 既往の災害</td>
<td>災害の土蔵が今度の火災以前に火事、地震等にあった事があれば、その年月日、及びその後補修程度</td>
</tr>
<tr>
<td>7 収納物</td>
<td>倉庫として使用していた場合、土蔵の中にどんな物を、どの位入れてあったか</td>
</tr>
<tr>
<td>8 土蔵の被害程度</td>
<td>今度の火災でどんな程度の被害を受けましたか、竪根の被害、土蔵の割落、焼け等出された具体的に記入</td>
</tr>
<tr>
<td>9 被害の理由</td>
<td>焼け落ちたか、内部に火の入った土蔵は何らかして火入ったりしたのか、心配があれば記入</td>
</tr>
<tr>
<td>10 収納物の被害程度</td>
<td>内部に入れてあったものが損傷を受けて居ればその程度を記入</td>
</tr>
<tr>
<td>11 防火措置</td>
<td>火災時に土蔵に到着どんな防火活動又は手段を講じましたか、内部に水を入れるとか、屋根をしたとか、具体的に記入</td>
</tr>
<tr>
<td>12 被害を受けた時刻</td>
<td>今度の火災で災害の土蔵に何時頃火災が起きましたか</td>
</tr>
<tr>
<td>13 発火の時刻</td>
<td>土蔵の内部に火が入ったのは何時頃か</td>
</tr>
<tr>
<td>14 其他</td>
<td>上記以外に、災害の土蔵と関係したところがあったとき記入</td>
</tr>
</tbody>
</table>

お願い：この調査は土蔵の火災に対する色々な性質を知るために龍火災焼失区域内外の土蔵について行うものです。

御多忙中恐縮ですが皆様の協力を願いますが、出来るだけ詳細に御記入下さい。

国家消防庁消防研究所

--- 45 ---
火災危険度よりみた都市の型について

場内三郎

1. 研究の目的

戦後大改革された我が国の消防組織においては、各都市の消防施設の基準を定めることを目的とし、我々に課せられた重要な任務の1つとなり、特にその1部は公務に伴う発表されている（註1）ものである。更にその細部及び科学的合理性のある基準の探究という問題は一層深く研究されなければならない現象である。

都市の消防施設を定めるに際して何を基準にするかという問題は非常に重要であり又それだけに依存する問題であるが、筆者はこの点について次のように「火災の危険度」と一定の水準以下にする必要な施設を求めるという方法を提案したい。それには先ず都市の火災の危険度を客観的に判定しなければならないという問題があるから、これでは先ず火災の危険度を判定する方法として「規模別延焼損」を利用するもの及びそれによる全体都市の分類より生じる型について述べることにする。

2. 火災危険度

都市の火災危険度の程度を表はするには従来から様々な方法が用いられているが、その一つは基本的には次のような要素を含んでいるもので、統計的確率には次のように定義することが出来るよう。即ち「火災危険度とは1定時間内に1定の範囲内で発生する火災の程度を表すものである」これらの中「時間」については精確な目的に応じ、年、月、日、時間等の単位が用いられ「範囲」については周囲の状況及び建物数並びに面積が普通用いられる。更に「発生する」ということははじめに過去に発生した火災の統計記録による場合と、将来に対する可能性を含む確率という考え方の場合との2つであり、「火災の程度」とは物理的現象的火災発生回数及び焼失規模（面積又は体積）で示す場合と、これに経済的価値を加えた損害額で示す場合、その他命等に関する立場から死傷者の数を用いたり、更に社会的、文化的価値の上下を問題にする等種々の場合が考えられる。通常よく用いられる方法としては1年間の人口10万人当たり焼失床数、又は出火件数及び平均1件当たり焼失床数等があるが、これからは夫々その研究目的又は利用目的によって最も適当な方法が選ばれるのが當然の事だといえる。

一般に火災現象について主としてその規模の点から分析を必要とする場合には「出火」と「延焼」とを区別して考えた方法が用いられる。都市全体として考えればこの両者とも横断ることができるが、特に出火が起こるならば延焼も勿論であるわけであるが、世界各都市の実情に照らししても同様の延焼に応じて出火件数が増加する傾向にあり、又火災の対策力の限界という点からみても出火を0にするという事は無理な考え方であるといえる。従って火災による損害は1度出火した火災を最少限度に止める事、換言すれば延焼を横断する事によって達成しなければならない事になり、これに消防の必要性とその使命が起るものである。この場合出火と延焼との定義上の問題について論及して、どの程度の火災現象を以て延焼とみなすべきか、或いはどの程度の延焼を消防の対象とするべきか、という点が問題となる。現在筆者等が研究の対象としている消防は都市公共機関としての消防の事であるから、その観点よりすれば「延焼とは1棟の建物（非住家の場合）又は1戸（住家の場合）の建物からそれ以外の建物にまで燃えつづく火災を指すものとし、その場合の1棟又は1戸の面積規模（建坪数）を50坪程度と考える」が適当であると思われる。勿論この50坪という値も多少増加すれば小さい程理想的なものに違いないのであるが、我が国の都市の状況及び消防力等を考慮に入れるときこの程度が適当と思われる。即ちこの程度以下に燃焼した火災については各家庭、工場等に備付けてある消火器、ポンプ等
第1図 A-型
① 昭和
② 大阪（狭山）
③ 京都市
④ 甲府（松山）
⑤ 木津
⑥ 高知
⑦ 岐阜
⑧ 室町
⑨ 大阪
⑩ 北海道

第2図 B-型
① 昭和
② 大阪（狭山）
③ 京都市
④ 甲府（松山）
⑤ 木津
⑥ 高知
⑦ 岐阜
⑧ 室町
⑨ 大阪
⑩ 北海道

第3図 C-型
① 昭和
② 大阪（狭山）
③ 京都市
④ 甲府（松山）
⑤ 木津
⑥ 高知
⑦ 岐阜
⑧ 室町
⑨ 大阪
⑩ 北海道

面で努力しているのは消防防災対策等のいわゆる消防防災と密接な問題にあたる安全か消防施設の基準設定という問題に関し、一応論外として考えることにする（訳2）又損害の程度を表すものとして「損害額」を採ることに望ましいのであるが、法令事情の変動のはけしき時期には評価の方法と精度が問題となるので、その
点も別に論ずることにし、都内の研究目的の為には「延焼頻度（延焼火災件数に対する50坪以上延焼火災の件数の比率）」を以て都市の火災危険度を表すものとすることにする。

3. 規模別延焼率とその型

前節で50坪以上の延焼率を採り上げることを述べたが、それのみでは未だ不充分な点が残る。即ち我々のように大発火の類発する所では50坪以上の延焼率が同じであっても100坪、200坪或は1,000坪という大規模な火災となる傾向の強い場合と弱い場合と弱い場合があり、その区別が表にはない欠点がある。この規模別延焼頻度の問題については建設省建築研究所の横井誠男氏の研究があり、各規模別の延焼頻度を表は一定式を求めるもの、その性状は相関するパラメーターで定まることが明らかにされている。従の延焼危険度の基準には多少欠点を含む所もあり、何故筆者の研究事象としている問題に至ってはそればどの程度も必要であるので、筆者は次のようにいくつかの類型に分類して表す方法を採ることにした。

先ず全国主要都市（約50）の昭和21年より28年までの統計記録から50坪、100坪、200坪、400坪、1,000坪以上に延焼する確率を求めて夫々の規模別に平均値を求めて、0.157, 0.094, 0.051, 0.025, 0.0081とある。これらの点を基に延焼危険度の全50都市の平均値の曲線であるが、都市の火災とこの平均値と比べたどのように偏差を示すかを図示し、上記の平均値の曲線が水平直線となるように50坪の場合を基準にとつて夫々、1.03（100坪の場合の値に対して）、1.08（同じく200坪）、1.04（同じく400坪）、1.14（同じく1,000坪）という数値を各都市の夫々の値に乗じて曲線を描いてみたのが第1図乃至第3図である。第1図は何れも上昇型で大発火の危険性が増大する傾向を示す群であり、第2図は反対に上昇型で大発火の危険性が減少する傾向があり、第3図は中間型というべきもので100乃至400坪程度の大発火が卓越する傾向を示す群である。更にそれらの中にも詳しくみると種々似た傾向を示す群がみとめられるけれども大別すると以上の3種（A型、B型、C型とする）とすることが出来る。

4. まとめ

以上述べた所を要約すると、第1に50坪以上の規模に延焼する延焼率、第2にそれ以上の規模の延焼を起す傾向を示す型の2つによって各都市の火災危険度を決定することが筆者の研究目的に最も適した方法であることを及び後者の型としてはA、B、C 3種の型に分類することを述べた。

以下までもなく都市の消防施設の基準を決定する為には、その都市の火災危険度を一定の基準に保つ上で必要施設を考えなければならないので、上記の延焼率などをいかが考えられるかという点も問題となり、又その危険度を構成している諸要因とその影響の割合を求めることに由って、消防力の弱強等の予定も明らかにされなければならないので、逐次その方向に研究を進めていま第1段であるが、この小論ではその基礎になる第1段階として危険度を表す方法について述べたわけである。

第1図乃至第3図を見ても直ちに判るように東京、大阪、京都等の大都市はC型の中でも平均値以下で、しかも急激な火災減少性を示していることは、事態地建物の不燃化と共に消防力の充実やその効果を示しているものと解し得る。旭川、青森、秋田等は何れもA型で火災の危険性を遮っていることが明らかに示される。その他類似についても種々の興味ある事実が想像されるが、それらの点については後の報告にゆずりたい事を附言しておく。

（注1） 昭和24年4月22日附 国家消防庁長官より各都道府県知事宛通牒「常設消防力の設備基準について」及び昭和24年8月25日附 同消防研究所長よりの通牒「消防水利の基準について」（以上附者とも同誌「消防」誌上に発表す。）

（注2） 昭和15年大阪府消防課編「消防施設の規定」にも大体50坪という標準が用いられているし、その他従来実施された
火災実験の結果からも、も、国の都市に多い木造普通築造の燃焼速度と事故所要時間との関係からみて80乃至10分間には80坪50坪程度に火災が拡大していることがわかる。

（註3）建設省建築研究所要報第72号（昭和24年4月）及び建築学会論文集第89号「火災の規模別頻度分布に関する研究」（横井、銘氏）参照。

感熱顔料について（第1報）

田村　淑

水性ペイントとして使用し得るからである。製造の難易にも関係する。水溶性真空乾燥させ予作るとき、水に溶け難しいものを米細い結晶となり、顔料としての利用価値が大となる。

d. 其他
毒性を有せざること。
安価であること。

3. 階色の機構

大体次の三に分類される。
a. 二重の結晶形間の移り
b. 熱分解

この他にも、熱による分解、変性、変化等利用可能なものは極めて考えられるが、現在使用されているのは上記の三種である。

a. による、変色度は耐力が著しく変化するも耐力を受けないが、b、c による消色に多少の差を生じ、変色点は極めてものとなる。

感熱顔料は、ある温度変化に感じて変色するものであるが、それを基に、変化が変化の両者を有するるためには、着色の物質に、温度による変色するかどうかをしらべ、その変色点を推定し、これを整理すれば、変色点を捉え、これを多段階に分けて、前記諸法を適用させるものである。

4. 感熱顔料の例

現在までに、當研究所で作つたものは下記の如くである。但し、その大部分は従来より知られていたものであつて、独自に作り出したもの
a 化学式 H_2I_2
温度特性 赤 125° 黄
晶形 設定
変色は著明
変化は可逆であるが、ヒステリシスは相当に大
製法 H_2Cl_2 と KI との化学量を、水溶液として混ぜると沈澱する。
これを水洗し、125° 以下で乾燥。
他 水に微溶
粒度微位
染色性あり
塩基性で分解
溶剤が不溶な金属面には、用いられな
い。
b 化学式 $\text{As}_2\text{H}_4\text{I}_4$
温度特性 詩黄 45° 詩赤
晶形 設定
変色は著しく、見逃しやすい。
可逆ではあるが、仲々もどらない。
製法 H_2Cl_2 の水溶液に KI の水溶液を加えると、一端沈澱を生するが、HI を更に加え続けると沈澱が消失する。このとき液中には $\text{K}_2\text{H}_4\text{I}_4$ が存在する。これと $\text{As}_2\text{H}_4\text{I}_4$ の水溶液を混ぜると、$\text{As}_2\text{H}_4\text{I}_4$ を沈澱する。之を洗い低温で乾燥する。
c 化学式 $\text{C}_6\text{H}_6\text{I}_4$
温度特性 深赤 70° チョコレート
チョコレート 160° 淡黄
70° は結晶形轉移
可逆
変色を下げると速かにつまる色にかえる。
162° は熱分解
不可逆
変色点は条件により多少変化する。
変色は、いちども極めて著明。
製法 $\text{K}_2\text{H}_4\text{I}_4$ 溶液（千辛に）に CuSO_4
溶液を加えると沈澱する。このときヨードを遊離するので
Na_2SO_4 と H_2SO_4 とを加えると
沈澱の生成が遂行される。この
沈澱を水洗し、180° 以下で乾燥
する。
他 水に微溶
粒 度 小
染 色 性 で 分 解
溶剤が不溶な金塚面には、用いられな
い。
d 化学式 PbH_2I_4
温度特性 深赤 143° 紅黄
晶形 設定
変色は著明
製法 $\text{K}_2\text{H}_4\text{I}_4$ 溶液に Pb(NO_3)_2 溶液
を加えると沈澱する。之を水洗
乾燥する。
他 粒度小
e 化学式 $\text{C}_6\text{Cl}_6 \cdot 2\text{U}_\text{O}_2 \cdot 10\text{H}_2\text{O}$
(U_0 はウロトロピンを表す)
温度特性 淡赤 40° 赤
晶形 水放出
空気の温度により変色点が移動する。
変色後温度を下げ、温度大なる
空気中におけばもとの色にもどる。
製法 C_6_Cl_6 とウロトロピンとの化学
量を、可及的溶り水溶液とし
て混合すれば結晶として出る。
これを少量の水で洗い、乾かす。
他 粒度大
水に溶ける
C_6_Cl_6 の代わりに、C_6_So_4、C_6(NO_3)_2、N_1Cl_2 を
用いて、殆ど同じ性質のものが出来る。それぞれ
の変色点は下記の通り。
5. 使用法
感熱顔料は、化学的に不安定なものを水に溶けるもの、粒度大なもの等が多く、これを塗料として用いるためには今後の研究によらねばならぬ部分が大きい。但し、粉末の少量をとり、物体の表面にそのまますりつけて充分役に立つ場合もある。水に浴け難しいものは水と混じって塗る法が良いようである。いずれにせよ、薄く塗ることが大切で、厚く塗つては表面温度は判らない。

6. 結び
現在まで得られた感熱顔料は、その種類が多く、使用面も狭いが、今後も試作を続けて、次第にそろえて行きたいと思う。

セルロイドの自然発火に関する研究（第１報）
＝「セルロイド」自然発火機構の考察＝

秋田一雄

内容
1. まえがき
2. 「ニトロ・セルロース」の加水分解
3. 「＝トロ・セルロース」の熱分解
4. 「セルロイド」自然発火の機構
5. 自然分解に対する混入物の影響
6. すすび

1. まえがき
「セルロイド」はよく知られているように低硝化度の「＝トロ・セルロース」を希釈アルコールで溶解し、後溶剤を取り去ったものであるから。一般に此のものは「＝トロ・セルロース」が希釈中に溶解分散して出来た固溶体であると考えられる。従って厳密に云ふならば其の性質は當然「＝トロ・セルロース」よりも希釈したものであるべきであるが、話な発火性のみに限るならば「＝トロ・セルロース」の発火性易さとその含有量の多いことから考察して「セルロイド」の発火性は増加した。「＝トロ・セルロース」のそれと大差ないとは云ふお居の無理はないであろう。そこで著者は先ず、こう云ふことを假定して過去に研究された「＝トロ・セルロース」の分解に基づき「セルロイド」自然発火機構の推定を試み、ついで是等の分解に逆し希釈及びその他の混入物が大きな影響をもつや否やを考察した。

2. 「＝トロ・セルロース」の加水分解
「＝トロ・セルロース」のみの場合の分解の模様を調べてみると、之を大別して加水分解と熱分解の２つに分け得る。そこで著者も此の両方面から検討を加へることにしたが、先ず加水分解から考察してゆくと「＝トロ・セルロース」は水式でなされる反応により生ずる硝酸エチルであるから、

セルロース + HNO₃ ≒ ニトロ・セルロース + H₂O （1）

之のものに水が作用する時には、常温でも反応は逆方向に進行する傾向を有し、いわゆる加水分解を行ふ。而も一般に此の反応は H「イオン」や OH「イオン」の存在により加速されるもので是等の「イオン」濃度が小さい時には分解は極めて遅いに拘らず「イオン」濃度が大きくなると分解は早くなる（そこでもって H「イオン」の作用を我々は酸強基酸側と呼んである）。

それで次には此等の作用の下での「＝トロ・
セルローズ」の加水分解の速度が問題になるの
であるが、簡単な「エステル」の場合は別として、その場合の如く複雑なる不均一反応に対し
て、その速度を定量的に表すことは困難であるので、それは止めて H'や OH' 速度に何
可変に影響するかを検討するに止める（安定性を
論ずるには難で充分である）と説明の為に此の
際では [H'], [OH'] は加水分解速度を示す
式が何らかの型を取ってもその速度恒数をのみ
人つけると考えられるから、結局速度恒数 k
が [H']や [OH']の何等かの関数になるかを
調べれば良いと云ふことになる。それと都合の
良いことに一級の「エステル」の加水分解にお
いては、共の速度恒数 k は
\[k = k_H [H'] + k_{OH} [OH'] \](2)

に [H'] [OH'] は水素及び水酸「イオン
」の濃度を示し、k_H k_{OH} は夫々の解釈
係数を示す。

なるに至り考へられることが分つてあるなら
之を用ふると加水分解の速さは [H']や [OH']
が大きくなる程恒数が分るが、之をどう解
ければ [H'] [OH'] の中その何れが効果が大きいか
は分からない。そこで次に(2)式の中の k_H と k_{OH}
と何が大きいかを比較してみると「＝トロ＝セ
ルローズ」に限らず一般の「エステル」の加水
分解において k_{OH} > k_H であって「OH'」の方が
分解速度に大きな役割を演じてゐる。そこで於
ても考へることは妥当で、さうすると結局
「＝トロ＝セルローズ」の加水分解に対しては
H'や OH' は(2)式で示されるような型で両者
も分解速度に寄与し、且つ両者の中 OH' は
H'よりも大きな効果を有すると云ふことにな
る。そして實際にも「＝トロ＝セルローズにつ
いて「OH'」は H'より 480 倍も分解に影響を與
へると云ふ。

次に考へより(1)式の k_H と k_{OH} の関係が
略々分つたから、次ぎに之等分解を促進する「イ
オン」濃度が加水分解速度に影響を及ぼすか
を云ふことは水水溶液中の水の「イオン」濃度は一定である。即ち

\[[OH'] [H'] = Kw = \text{const} \](3)

と云ふ関係があることに基づくと云ふこと
を考えてみると、それには(2)式を[H']か
[OH']で微分して常おくことにより容易に求
まる。そこで(3)式を[H']を取ると(2)式に(2)式に

\[\frac{dk}{d[H']} = k_H - k_{OH} [H']^2 \]

に之より

\[[H'] = \sqrt{\frac{k_{OH}}{k_H} \cdot k_{W}} \](4)

が得られる。

面に

\[k_{OH} = 10^{-H} \text{(常温)} \]

又前述の如く k_{OH} > k_H

従つて(4)式より

\[[H'] > 10^{-7} \]

となり加水分解速度が極小になるのは水素「イオン
」濃度が若干酸性に於てある所にある時である
と云ふことが分るが「＝トロ＝セルローズ」に
後の此の濃度は 5×10^{-8} 位であると云はれて
ある。

かくて以上のことより「＝トロ＝セルローズ」の加水分解は水素「イオン
」濃度が微酸性になるようにして、之の速度は常に最小に
保たれるこふある。分解は殆ど進まないわけ
であるが、實際に於ては「＝トロ＝セルローズ」の加水分解反応が(1)式で示される通り
HNO_3 を生成する結果、いくら始めに微酸性に
しておいても、生成する HNO_3 を完全に
除去去かない限り水素「イオン」濃度は増し、
最小の速度を維持することは出来ない。のみならずH' の増加に伴い分解速度も増大し、ひい
ては生成する HNO_3 の量も増し、又此の HNO_3
は酸化剤として酸化され易い酸素を酸化発火
するため温度も上ると云ふことになり、逆には
後に示す熱分解の型の分解を引きおこすに至
ると考えられる。

そこで、一般には出来るだけ加水分解を進ま
せない目的から上記の原理に基づいて生成して
くる HNO_3 を中和するために弱「アルカリ」を
混入し、いくらかでも加水分解の増大を阻止し
やすくと云ふことが行われてゐるが（之等弱「ア
ルカリ性の混入物は安定剤との呼ばれている。通常は炭酸ソーダ、炭酸石灰、尿素及びその誘導体等が用いられているようである。

次に加水分解が行われる際の H₂O の型について、若干の考察を加えてみる。加水分解に対しては H₂O が蒸気で液体で一方向に変わるか否かの型をとるか自然分解の原因にはあり得るもので、今水蒸気の場合についてみれば之と固有的「＝トロ＝セルローズ」が反応するには先ず「＝トロ＝セルローズ」の面に水蒸気が吸着することが第一段階であるから、空間に存在する水蒸気の濃度が大きい程分解は起こり易くなる。之に対して H₂O が液体の場合には分解は水と「＝トロ＝セルローズ」の接触面でおこるが、生成する物質 HNO₃ について考えると水の量が少ない時には化合物の濃度が大となり分解を早めるが水の量が多い時には、反対であると云ふことが出来る。従って之によれば温度の高い空気や水の水を接觸することは加水分解を進ませる可能性があり云ふことになるわけである。

3. 「ニトロ・セルローズ」の熱分解
「＝トロ＝セルローズ」に熱がその他の型で energy を與へた時、それが集中的に成る結合部に作用するとき、其の結合部が切れて分解をするとき、雲ふ型式の分解を熱分解と云つてるが、この分解は先の加水分解等の如く自然分解の物質の存在を全く必要としないのみならず、一般に発熱反応であるから、或る一局ぶの発熱折により、他の部分の分解が進むておもし、更に又始めの分解により生成する NO₂ は active な酸素を次式の知くに放出し酸化作用を呈する結果、

\[NO₂ \rightarrow NO + O_2 \]

分解は兩者相待って益々促進され、其の分解の速度が極端に早くなるに及んで発火するものである。そして熱分解は實際に「＝トロ＝セルローズ」を発火させる直接の原因であり、その分解の速度も加水分解の速度を較べれば一般に速いものと云へる。

さて「＝トロ＝セルローズ」の熱分解は上記の如く真の熱分解と NO₂ の自動酸化作用が合は

さつて促進されるものであるが、今其の速度を数式的に取扱つてみると、真の熱分解は単分子反応、NO₂ の自動酸化は NO₂ と「＝トロ＝セルローズ」の 2 分子反応と考えて次の如くに書ける。

\[-\frac{d(a-x)}{dt} = k(a-x) + k'(a-x) \]

（6）

兹に k、k' は夫々速度恒数 a は始めの量、x は分解量を示し、速度恒数 k の温度変化は「ア＝ニ＝ウズ」の式,

\[k = k_0 e^{-\frac{E}{RT}} \]

（兹に T：絶対温度、R：ガス定数、E：活性化 energy、k₀：成る常数）

で表される。

そこで次に (6) 式を t = 0 の時 x = 0 の条件を入れて積分してみると、

\[\ln \left(\frac{k' a - k}{k a} \right) = t(k' a - k) \]

（7）

\[x = \frac{k a}{k' a - k} \left(e^{(k' a - k) t} - 1 \right) \]

の如くになり、之を図にすると Fig.1 の如く、Fig.1。

分解量と時間の関係

となる。即ち始めの速度はやや小さい、次第に早くなり、NO₂ の自動酸化が影響してくるに及んで、分解速度は急激に早くなることが分る。

4. 「セルロイド」自然発火の機構

次に以上によって記したことでにより「＝トロ＝セルローズ」の分解機構を経緯的に考察してみると、要するに「＝トロ＝セルローズ」の自然分解は之と接触する H₂O 中の \(H^+ \) や \(OH^- \) の存在の下に加水分解をおこし、HNO₃ と碳素酸に成り、此の HNO₃ が \(H^+ \) 濃度を増し、分解を促進する。
進すると同時に、一方では、酸化され易い繊維素を酸化発熱する。その結果「ニトロ・セルローズ」内の一層の温度は次第に上昇し、遂に熱分解を引き起こす。しかしこの際の放散が充分でなければ温度は更に上昇し、NO₂の自動酸化も繰り返し、分解速度は急激に早まって一部が発熱するに至るものと考えられる。そこで若し、先の仮定の如くに「セルロイド」が、その発火に関する限り、「ニトロ・セルローズ」と略々同じである場合は、我々は「ニトロ・セルローズ」の分解機構を再考し、その傍で「セルロイド」にあてはめて「セルロイド」の自然発火も上記の機構に基づくと云ぶことが出来る。

5. 自然分解に対する混入物の影響

今迄「セルロイド」は「ニトロ・セルローズ」と同様の発火性をもつとして考察を進めて来たが、「セルロイド」には繊維成型その他の混入物が含まれてあるから、次に之等の混入物が上記の分解に如何に影響を及ぼすかの有無を検討してみる。水分の性質の上から観察すると、大きさほよではあるが、大凡次のことが云へるやうに思われる。即ち先ず「ニトロ・セルローズ」の分散媒となってある繊維は既に可塑性を良くする
と云ぶ意味のみでなく、何等かの型で「ニトロ・セルローズ」の安定化に役立つことがあることが認められてゐるもので、このものが分解に対して特に悪い影響を有するとは考えられない。次に「セルロイド」を多少軟化するための軟化剤として「ヒマツ」油等を入れることもあると云ふが、之は入れた場合が多いし、入れても極く少量と云ふこともあるから今では考へさせねでおき、更に溶剤は何らしても好ましくないが、之は安定性に於てないかは問題外で、又安定剤として特に尿素その他の質を入へば却つて分解を阻止されることは前記の通りである。かくて一般の「セルロイド」に於ては可燃混入物は着色するための染料であるが、若し之が悪い影響を有するなら先の仮定は「白金ルームベース」等の如き透明物質に置かされることになるが、實際に製造に當っては染料は基底性の物質を用ふことが常識にしてゐると云ふから、之は一種の安定剤の働きをなすことになり、結局「セルロイド」の混入物は何れも「ニトロ・セルローズ」の分解を促進する種類のものは全くなく却つて安定化に役立つもので、あると云ふ結論が得られたやうである。かくて、我々が「セルロイド」の自然発火を論ずるに當ては混入物に余り気を使ふ必要はないやうに思われる。

6. むすび

以上「ニトロ・セルローズ」の自然分解の機構に基づいて「セルロイド」自然発火の機構を考察して来たが、之等の機構が正當であるか否か、換言すれば「セルロイド」の分解は「ニトロ・セルローズ」の分解と同様であるか何らかと云ふ実験的検討は次報以下に譲るとして、今迄に之等の機構が正しいとして、共の対策を考えてみると大凡次のことが云へる。

「セルロイド」の自然発火の第一段階は「ニトロ・セルローズ」の加水分解であるから、出来得るに蒸気を稍、液体にし、H₂O との接觸を防ぐ、次に若し加水分解を始めでも、共の速度が増加をしないように水素「イオン」濃度の増大を防ぐため「アルカリ」性の物質を入れる。

そして又温度が高いと分解を起こす可能性が大きくならねば、温度は出来るべく低く維持しNO₂の吸収剤も入れる方が良い。

更に熱分解は熱の蓄積に依存するだけだから分解に當り露発生する熱を疑っつやることは必要で通気を考へ、つめ重ね方に注意すべきである。又前記の如く大量の水に接觸する時は加水分解の結果生する HNO₃の濃度を増加させない上に、熱の放散も良く行はれるから、場合によっては「セルロイド」を水に浸ししておくことも考へられる。

さて、是等の対策は原料となる「ニトロ・セルローズ」が完全なものである場合の話であるが、従々硝化の際の酸が残ったり、又その酸を取るために「アルカリ」を入れて煮洗を行い、而もその「アルカリ」が残ることもあり、その場合には自然発火のために弱める條件を除いておくと云ふ事になるから注意を要する。更に又硝化の際の條件が悪いと仮に記したとは異なる分
解が不純物に基づいて起こることも認められているが、之等の問題に対しては未定の考察があつてはまらないことは勿論である。（24.12.10）

1)「セルロイド」に対しては標準人と「ニトロセルローズ」が一種の化合物を形成しているとも云われてくる。例へば、
Nesmoulin: Mem. des Poudres (1851)
XXII 58
Tclissen: Comp. rend. 191 654. (1930)

2) 山家信次：元海軍火薬製研究報告 甲28 47

3)「ニトロセルローズ」の生成的分解機構の考察のためには、その無酸化してゐても燃焼でも差支へないと考へられてゐる。以下「ニトロセルローズ」を同記することにする。

4) 加水分解の速度は「消火」と云つても過度の熱分解の場合は比較的迅速に達してる。なお、水の存在下ではやむを得ない質性のものであることが容易に見られる。

5) 山家：前出。

7) 千谷利三：化学反応 P. 364（岩波）

8) Farmer : J. chem. Soc. B 807 (1920)

厚木喜基：「セルロイド」及び可塑物工業（最近工業化化学大系）

9) 酸化の過程及び生成物については種々の説があつるようである。

例へば、
Kalb-Falkenhausen : Ber. 3514 (1927)
Jackson-Hudson : J. Am. C. S. 378 (1936)
994 (1937), 2049 (1927), 989 (1938)

10) 山家：前出。

11) (5) 式で示される反応は可逆であつて 0 を放出して NO になった NO2 又は空気中の酸素を蓄えて NO2 に戻る結果、一度 NO2 が出来ると、此のものを酸化作用は何時迄も繰り返して之を自身酸化作用と呼ぶのである。そして又此の作用を除くためには NO2 を良（能吸する物質）例へば「セントソルト」、「ナフタリン」等）を含むとされ並あり、之も安定剤と云つてる。

13) 複雑な分子においては、

\[k = k_0 \exp \left(-\frac{E}{RT} \right) \frac{n}{n-1} \]

で示されるとなれ、Hinselwood : The kinetics of chemical change (1939) oxford。

14) 厚木：前出。

15) 厚木：前出。

微弱電流で動作する火災警報器用リレーの1方式

守屋 忠雄

光電池を用ひた煙火災警報器又は熱電堆を用ひた微弱火災警報器にあつては、火災警報の際に出る短絡回路を動作させる要には、10^-4A 程度の微弱な光電流、熱電流により動作する鋭敏なるリレーが必要である。此の種のリレーは通常、可動線電流計の指針部に接点を設けたメーターリレーで、断線的なメーターリレーには 2, 3 の型式がある。

例へば線盤回転力をそのものを接点要力とは

--- 55 ---
て用ひないで，温度調節計に用ひられている様
な，定時間隔での接点加圧機構を別に備へであ
る型式のものでは，動作は確実であるが機構が複
雑な為高価になり，警報器の普及目的には合わ
ない。

又剤持力そのものを接点加圧に利用する型の
メーター・リレーは，メーター製作の技術上の制
約を受けて，その接点容は 10μA に付き高々
1mg 重程度であるから，接点材料として白金－
白金を用いても接続部分の電導性を接続の度每
に確保する事は容易でなく，接点間隔は長く又
は薄い脂膜が挟まれたとくに接觸は非電導性にな
つってしまった。したがって接點材質にはより
高電導性に倣すのが望ましいが，電磁リレーの
インピーダンスは直径チョーキングコイルの意
願を程立てるから，電磁リレーの接点が引き付け
られた時，現脈動を防ぐように工夫を施した。此
の方式による時はメーター・リレーの接点は 100%
出力で本質である。一度接点が導通すると極く軽
い磁着を起こして警報を発し続けるが，これは装置
の使用目的に反して実際の用途に合はない。そして此
の磁着は，他の補助リレーにより容易に引き離
す事が出来する。

次の種類のリレーは極く弱い接点加圧で動
作可能で，接点の形状表面仕上方法に就いても
余り厳密さを要求しない。

リレー使用に用いるメーターは，パネル型の
80μA のもので，接点は銀メタキシ牛皮1.0
の電極に，直径 0.3 毫の白金線を接続させた。

以上，警報器用リレーの接点導通を確実に
する一方法を述べたが，接点加圧，接点の形状の
種々の場合に就いての系統的データーを採って
ないので本報末の報告になった。此の様々な問題に興味を持たれる方が御幸高見
を承り度い。

泡消火器薬装薬剤の老化に就て（第 1 報）

中村 孝

1. 緒 言

泡消火器に薬液をつけた後に，それがどれ位の
期間もつか？ ということは，大抵の使用者が
いまだ疑問であるが，今日までのところ，自信
をもってそれに答えるだけの資料は日本に
はならない。「まあ1年位は大丈夫だろう」いうの
が，今日専門家の常識だという。で「1年たっ
たら薬剤はつめかえて下さい」と指導するのが
普通である。なら1年1箇月はどうか？

—— 56 ——
で効力が、まるで雪に飲むこともないであろう。1年半では？ 2年では？ どれ位で効力が半減しますか？………こう問いつめられて来るとき、皆目答えられないのが現状である。ところが消火器の生産者が1年半、消火器の製造及び補修が多数組みの中に出、その最初のものは1年を経過している。それについてしばしば、1年後の老化的状況を見落とすのが苦である。従来の未検査製剤の場合と異なり、今回のものは装填直後の効力の見落としによって、比較に便利である。よって今こそ、そのチャンスであると思い、技術課長の同意を得て、今度この研究に手をつけることにした。

2. 老化の原因

老化が何について起こるかといえば、次の2面が先ず考慮に入れる。
（a）ガス発生剤（NaHCO₃及びAl₅(SO₄)₃
いずれも無機物）
（b）泡沫安定剤（大体有機物）

先づ（a）に就て考えると、両者は、無機物であるので、腐敗の恐れはない。重曹の炭酸分を失われるとはいかが考えて見ると泡沫安定剤から腐敗により酸が出れば、これは可能、しかし重曹中の炭酸ガスがもとになっている（NaHCO₃（これは普通の重曹には必ずしも多少とも含有されていて））と結びつければ逆になり、むしろ、炭酸ガスがふえる方になる。

尚、B液容器に、ふたがあつてもそれは不完全であり、液上につき出ている壁面が少数残っていることが一般から、その液体薄膜を通じてA.B両液の交換が起こり、これにより、両薬剤が協力することも充分想像出来る。これは極徐々であつても長い年月には相当の高に達するかも知れない。

3. 試験の要領

試験は前章の2つにつき別々に行うことも出来る。但し（a）の方は発生ガス量の測定で足り、仕事は簡単だが、（b）は難面例である。よって今回は、両者を併合した総合的試験を実施することにした。最総合的のは放射試験であり、その射程をしぼらべるのも1案であるが、之では不正確であり、且つ、費用も手数も大変であるので装薬の少量をぬきとり、計量シリンダー中に化成膨張させ、その膨張率を測定して効力の見落としをつけることとした。

但し、温度はいつでも20℃として一定。大気圧については、補正を行い、標準気圧の場合の容積に換算する。測定時の効力を、Pₑ標準大気圧をPₐ、測定容積をVₙとすると、換算容積

=Vₙ(STR/Pₐ)（気圧変化によって、溶解度も変化する苦であるがこれは除外）

試験液抽出の場合は、両液をよくかきまぜて、両液の比をしめし、その比に従って両液をぬき出し、両者の合併量が約900ccである如くする。こうした少量をとるだけであるから、その後でも消火器はそのまま保存使用可能である。勇薬液ぬきとりは何週でなく返さを入れ、それを一定期間をおいて返す行いすれば、時間経過と老化との関係が、きちんと求められる。尚この際、装填の時機がいつであったか、どのような場所に保存されたか等を考慮に入れる。この試験は、一般使用家の手許にある多数のものに就て実施し、各製造家のお手を出すだけ網羅する。これとは別に新たに研究所実験室に於て薬剤を装填し、再びより細密に変化を測定して行う検定である。これに於ては、一般のやり方以外に各種の試みをそこに出す。例えば、

（a）内筒上縁部にララフィンをぬる。これによつて液の薄膜が内筒上縁部につくのがふされるかどうかをつくる。

（b）完全に密封して、両液の交流を隔断した場合、老化がどれ程ふされるか？

（c）夏季につめるのと、冬季につめるのどの差はどうか？ 特に腐敗に対して。

（d）とかす水として、両水、水道水、湯ざし、等のどれが一番よいか？ をつくる。

（e）保存する温度は？ 夏季の30℃位の高温と、15℃内外の温度でちは？

（f）液面に、油か何か（たとえば流動ララフィン）の薄膜を浮べ、それにより空気をたら切り老化がふせるかどうか？
4. 試験の結果

新しい意図を盛った実験（前章後半に記載）は今回新たにスタートしたばかりであるので、報告は第三報以降にゆるするより外ない。ここで報告するのは、専ら前章前段に記載したものだけである。今回調査した本数は約40である。一般的に半年以上経過したもの内筒上に堆積物があり欠を化学的に調べて見ると、殆どに中性である（PH=7.0）。因みに、A 液は PH=8.6 B 液は PH=3.4 であるからやはり堆積物は両液の化和したものであると推察してよい。筆者の見たところによると、内筒の上線は水から80 mm 位は少なく突き出て居るにかかわらず、最上端まで、ぐしょぐしょにぬれているのが一般である。これは殆ど例外はない。特に、内筒の縁のつぎ目が折り合せになって、そこでハンダがまわりていない場合、その細隙を通じて液の上ることが最も多い。少くともその部だけには内外面共にハンダを充分流してつくりとさせ細隙のない様にすべきだと思われる。

<table>
<thead>
<tr>
<th>試験番号</th>
<th>Maker</th>
<th>所在</th>
<th>試験日</th>
<th>試験名</th>
<th>頻容積</th>
<th>化合物容積</th>
<th>5秒後</th>
<th>最高</th>
<th>10分後</th>
<th>(最高)</th>
<th>附記</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>不明</td>
<td>有動研究所</td>
<td>証明</td>
<td>25.3.39</td>
<td>9.0</td>
<td>78</td>
<td>85</td>
<td>85</td>
<td>94</td>
<td>内筒上堆積物あり</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>岡田商</td>
<td>小田商店</td>
<td>24.3.16</td>
<td>25.3.31</td>
<td>9.2</td>
<td>65</td>
<td>73</td>
<td>74</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>24.4.15</td>
<td>25.4.15</td>
<td>8.6</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>7.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>初田製作所</td>
<td>連島村役所</td>
<td>24.4.15</td>
<td>25.4.15</td>
<td>8.6</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>7.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>24.4.15</td>
<td>25.4.15</td>
<td>8.6</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>7.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>24.4.15</td>
<td>25.4.15</td>
<td>8.6</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>7.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>24.4.15</td>
<td>25.4.15</td>
<td>8.6</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>7.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>24.4.15</td>
<td>25.4.15</td>
<td>8.6</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>7.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>24.4.15</td>
<td>25.4.15</td>
<td>8.6</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>7.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>24.4.15</td>
<td>25.4.15</td>
<td>8.6</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>7.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>24.4.15</td>
<td>25.4.15</td>
<td>8.6</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>7.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>24.4.15</td>
<td>25.4.15</td>
<td>8.6</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>7.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>24.4.15</td>
<td>25.4.15</td>
<td>8.6</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>7.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>24.4.15</td>
<td>25.4.15</td>
<td>8.6</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>7.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 15 | 中村製造株 | 自然物産 | 24.12.12 | 25.4.4 | 9.0 | 57 | 65 | 68 | 7.2 | 内筒上部外側
が湿れかけ居る |
| 16 | | | 24.4.15 | 25.4.15 | 9.0 | 57 | 65 | 68 | 7.2 | |
| 17 | | | 24.4.15 | 25.4.15 | 9.0 | 57 | 65 | 68 | 7.2 | |
| 18 | | | 24.4.15 | 25.4.15 | 9.0 | 57 | 65 | 68 | 7.2 | |
| 19 | 岡田商会 | 河南遊楽 | 24.3.15 | 25.4.4 | 9.2 | 75 | 80 | 80 | 8.7 | 内筒上堆積物あり |
| 20 | | | 24.3.15 | 25.4.4 | 9.2 | 75 | 80 | 80 | 8.7 | |
| 21 | | | 24.3.15 | 25.4.4 | 9.2 | 75 | 80 | 80 | 8.7 | |
| 22 | | | 24.3.15 | 25.4.4 | 9.2 | 75 | 80 | 80 | 8.7 | |
| 23 | | | 24.3.15 | 25.4.4 | 9.2 | 75 | 80 | 80 | 8.7 | |

--- 58 ---
<table>
<thead>
<tr>
<th>24</th>
<th>阿島商会 城南選銅</th>
<th>24.3.15</th>
<th>25.4.4</th>
<th>9.2</th>
<th>70</th>
<th>74</th>
<th>74</th>
<th>8.0</th>
<th>内筒上</th>
<th>地質物</th>
<th>アリ</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>"</td>
<td>"</td>
<td>51</td>
<td>55</td>
<td>55</td>
<td>6.0</td>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>"</td>
<td>"</td>
<td>63</td>
<td>67</td>
<td>67</td>
<td>7.3</td>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>"</td>
<td>"</td>
<td>60</td>
<td>64</td>
<td>64</td>
<td>7.0</td>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>"</td>
<td>"</td>
<td>56</td>
<td>60</td>
<td>60</td>
<td>6.5</td>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>"</td>
<td>"</td>
<td>62</td>
<td>66</td>
<td>66</td>
<td>7.2</td>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>"</td>
<td>"</td>
<td>59</td>
<td>63</td>
<td>63</td>
<td>6.8</td>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>阿島商会 優人の友社</td>
<td>24.5.17</td>
<td>24.4.3</td>
<td>9.2</td>
<td>65</td>
<td>70</td>
<td>70</td>
<td>7.7</td>
<td>"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>"</td>
<td>"</td>
<td>55</td>
<td>60</td>
<td>60</td>
<td>6.5</td>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>"</td>
<td>"</td>
<td>70</td>
<td>75</td>
<td>75</td>
<td>8.2</td>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>"</td>
<td>"</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>5.8</td>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>"</td>
<td>"</td>
<td>61</td>
<td>65</td>
<td>65</td>
<td>7.1</td>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>"</td>
<td>"</td>
<td>63</td>
<td>72</td>
<td>72</td>
<td>7.8</td>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>中村ドラム 小口製</td>
<td>24.8.17</td>
<td>24.4.7</td>
<td>9.0</td>
<td>66</td>
<td>70</td>
<td>70</td>
<td>7.8</td>
<td>内筒上部外側が環型由来</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>"</td>
<td>"</td>
<td>60</td>
<td>64</td>
<td>64</td>
<td>7.1</td>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>中村ドラム 光明軒</td>
<td>24.11.9</td>
<td>24.4.7</td>
<td>9.0</td>
<td>75</td>
<td>80</td>
<td>80</td>
<td>8.9</td>
<td>"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>"</td>
<td>"</td>
<td>70</td>
<td>74</td>
<td>74</td>
<td>7.8</td>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

顛倒式泡消火器に於ける混合作用の研究（第2報）

富 塚 清

1. 緒 言

顛倒式泡消火器に於ける顛倒初期の激速な混 合が大切であること、その測定法、及び理想的 と考えられ型式2種を前報に紹介した。今回は 最近特許確定したもう一つの新しい型を紹介す る。併、前回紹介の二、ピストン型は最近特 許確定、検定通過市販される様になったが、そ の初期混合については、前報に設計値を紹介し ただけで、現実にどれ位になるかについてはふ れていないから、今回それを実測紹介する。

【富塚清著『顛倒式泡消火器に於ける混合作用の 研究』消防報告第1号、P. 56、11/1950。】
3. 実測

混合程度の測定方法は前回同様、インキ着色法である。
（a）遠心ボンプ型。第1面通りに作ることは
厄介だったのと、普通の泡消火器の内筒の上方
の支棒3本のまわりに、板をつけ、容器に押し
入れたあと、板を外に押し出して間に合せる。

これは、内筒上端と蓋との間隙が狭い型である
ので、細工は非常に窮屈で、単に顕微鏡で観察し
ただけでは、この期間15秒）理論値に比し、
僅か1/10しか混合していない（前回の報告の
もとでは、倒してすぐ起こしても1/6だけ混った）。

回転式では、8回のみつかってもまわりに前と
全時間にわたって運転し、その混合は、理
想値の1/2で正に、5倍の効果を上げた。（前
回のものでは、1へん倒して元に戻し、更に倒し
て、1分放置して起こしてもその混合は、これと全
じ1/2でしかなかった。今回は、口のはるかに
近いもので、僅か15秒の間でこれが出来るの
だから、この効果は相当のものと云える。間に
合せのものでこれだから、第1面に示す通り理
想的に作れば、作用は更に強くで、恐らく、一
へんを出すだけでも足るだろう。)

（b）ビストン型

市販の本物について実験。1引の頼で、混
合は理想値の1/3に達する。更によう一度顕
倒すると混合は理想値の1/2に達する（ビス
トンと筒との間に漏洩が全然ないとすれば、た
く1回で、完全混合に達する筬だが、実際のも
のではビストンがかたがただから、この程度に
しか行かないのである。もう1つの理由として。
B液の押し出されるとき、A液の吸い込まれる
口とが、上下に相接してあるので、せっかく押
し出されたB液がA液の大量中に全面射出され
た、その相當の部分が路踏して、内筒中に再び
戻って来るらしいということが考えられる。

しかし、質地に噴射試験をしてみると、この
型式では、殆ど見られない前間から完全に泡が出
ガラス筒中に吹き込んでも、全然、液層が
分離して現われることがない。だからこの程度
で混合は一応充分だと認められる。尚，混合割合はこれ位としても，その際，相当の挙動作用が起るので，絶対，これがスタートの微活性に物というのもは知れない。考えてみると，全噴出期間は1分にも及ぶのだから，あとで噴出するものはそう早くまざるには及ばない。最初の10秒間位のうちに噴出するもの，つまり，全量の1/6位のもの，完全に混和されば，質は充分な答である。だから，ピストン型に於て，押出量は1回では理想値の1/3位にしか達していないが，入口に隠した相当量のA.B両液を混合挙動するという要求は，完全に満しているのではないかと思われる。

最近の防火塗料の試験結果報告（第1報）

新居 六郎

§1 要約

昨年（昭和4年）防火塗料業者及びG.H.Qより消防研究所に提出された試料及び試験片について消防研究所防火塗料規格に基づいて試験を行った結果をまとめたものである。尚、ALBI- "R" タイプの塗料に対して耐水試験を実施すべきか否かを検討する質問を行ったが，その結果の一部を記した。

§2 試験方法（消研規格参照の事）

消研規格とJ.E.S化學5661と異なる主な点は
1. 防火塗料を用途と性能に従って3種に区分し，夫々に対して異なる試験方法を採用した。即ち屋外用のものも含まず。
2. 試験時のはく離の厚みを最大0.8mmとした。
3. 燃焼試験（火管試験）を省略した。従って試験体は一種（板状，寸法：0.5×10×10cm）のみとなった。
4. 発泡試験に於ては電気加により幅射熱及び加熱空気（塗面周辺の温度＝750±20℃）をあて，発泡時間と測定し，防火塗料第1種では15秒以上を合格
 2 2 120秒以上を合格
 3 3 屋外曝露前15秒以上
1年間屋外曝露後15秒より著しく低下しないものを合格とした。
附図1 発火試験装置 1/5 縮尺

A 部

2kW鉄板加熱

照合器

反射鏡

3KVXA トランス

A 部拡大図

試験片

ホットジェンクション

熱線接続装置と物質

列孔

電気炉部

電気炉部

100V, A.C. 電源
新刊紹介 (1949年6月以降)

鈴木流太郎：火災学 B5判 132頁
地球出版社 昭和24年12月

この書は著者自身が主として気象学の立場から火災を研究した成果と、文献を参考にした集録的な資料として、貴重な資料である。内容は、火災の発生、発展、消火方法、火災の原因、火災の影響などを含む。

金原 馨郎：火災の科学 B6判 234頁

この書は著者金原馨の火災研究の第一人者である、著者の火災現象に就いての説明と実験に基づいて書かれたものである。二篇文章で、第一篇では著者の研究の発展と火災の発生、消火の歴史が述べられており興味深い。第二篇では火災の発生、発展、消火の機械、効果等が詳らかに説明されている。更に、火災の影響、発火の性質等が記述されている。全巻を読ませていただきたい。

田邁 平光：耐火建築 A5判 380頁

この書は、耐火の建築の発展を求めて過去の事例を述べ、時代の建築の設計的変化を説明している。耐火建築の現状、設計方法、施工方法、耐火材料の選定等を詳しく説明している。

消防協力会編：消防年鑑 昭和25年版 A5判 368頁

この書は、消防の現状、消防の経済、消防の教育、消防の組織等を含む。消防の現状、消防の経済、消防の教育、消防の組織等を含む。大変貴重な資料である。

消防文化協会

この書は、消防渉と建築法規との関係、消防建設、消防教育、消防活動、火災物、火災保険等を含む。大変貴重な資料である。

東京消防機器研究会編：消防機器便覧 B6判 741頁

この書は、消防の機器の歴史及び現状を求めて過去の事例を述べ、時代の機器の設計的変化を説明している。耐火建築の現状、設計方法、施工方法、耐火材料の選定等を詳しく説明している。
ABSTRACT OF CONTENTS

(1) K. Tomizuka, "Editorial."

(2) K. Tomizuka, "General Report on the First F.R.I.'s Anti-freeze Experiment of Fire-fighting Apparatus": This was held at Tadeshina in Nagano Prefecture, on 16th to 25th January 1960. Pumps, extinguishers, fire alarms and hydrants were tested in low temperature down to -13 C.

(3) K. Tomizuka, "General Report on the 2nd F.R.I.'s Fire Experiment": Aims and results of 10 test items are described.

(4) K. Endo, "On Anti-freeze Experiment of Toyoda-Morita Fire Truck": Test data of several method of heating which were applied to the engine and pump, are fully described.

(5) I. Iwama, H. Inoue, "On the non-freezing Character of the Hydrant": We took the underground temperature in the neighbourhood of the hydrant as the first step.

(6) T. Tamura, "Study of a New Schlieren Method": We found a new Schlieren method having multiple light sources. It makes us possible to have a very wide field of view.

(7) S. Nakaochi, S. Hirosawa, S. Takase, "About the Temperature Variation of the Room Having High Ceiling, when the Room is heated": We obtained some interesting results but the experiment was not completed.

(8) H. Imazu, "Study of Fire Resistive Dozo": Dozo have been proved to be fire-proof when they are built well and maintained with a good care. However they often failed when fire found its way into dozo, or otherwise collapsed completely. The objective of this study is to find the causes of failure.

(9) H. Imazu, "The Damage to Dozos in the Noshiro Fire (20 Feb. 1949)": So many Dozos burnt down in the Noshiro fire that we can not look over the whole area. We pursued investigations to them by cards afterward.

(10) S. Horiuchi, "About the Risk of Fire in Our City and its Classification": From the fire statistics we decide the spreading probabilities of fire viewed from its scale in every city, by them classified the types of cities on degree of fire probabilities.

(11) T. Tamura, "Study of Thermocolors": Examining on general properties of thermocolors, we synthesized several samples of them.

(12) K. Akita, "Research on the Spontaneous Ignition of Celluloid. (1st Report)" On a Mechanism of Spontaneous Decomposition of Cellulo'd: We examined theoretically the mechanism of spontaneous decomposition of celluloid and referred to the condition of ignition and its counter measures.

(13) T. Moriya, "On the Relay, which is operated by very weak Current and is used for a Fire Alarm": A new device was tried to assure perfect contacts in the meter relay for a smoke detector.

(14) T. Nakamura, "On Decay of Chemical Foam Agents": Old chemicals (about 1 year old) sampled from actual extinguishers were mixed and the performance was observed.

(15) K. Tomizuka, "On the Mixing Action of Upside-down type Foam Extinguisher": The usefulness of newly devised mechanical mixer inside extinguisher, and also that of piston type mixer was determined by ink method.

(16) R. Nii, "The 1st Report on the Test of Fire-retardant Coating materials in 1949": In this report, testing method and apparatus are described.
空気管式
自動火災報知装置

30年の歴史と繊細せる技術による今や世界の水準を凌ぐ本式は大正13年以降施工物1000余件所実案例に国より火災を未然に防止し得たもの三十三営室を始め
80余件に達して居ります

機能
総合断熱（マチ制御下の全断熱管）
AT検出線（作業検定合格品）受信機（A級合格品）の2部より成り

（機能） 出火場所の位置を示す火災信号装置に従って各部を

（使用） 出火場所の位置を示す火災信号装置に従って各部を

（注意） 出火火災報知器を設ける為20〜30秒

（警戒範囲） 建物の構造により異なる5〜10米

設計・製作・工事・保守
能美防災工業株式会社

防火紙

障子紙、模様、壁紙、装飾用並造花用紙
包装紙、紙袋、書類用紙

発表元

東日本科学工業株式会社

噴霧式

防 障

障のないのを誇る

いちばら式

消防ポンプ

①一番安価の出来るポンプ…………良質持久
②一番使いやすいポンプ…………逆上都易
③一番進歩したポンプ…………不斎研究

関東印刷紙工業株式会社

工場 埼玉県川越市小川町
本社 東京都新宿区下高井町8
三輪消防自動車

新愛知起業株式会社
名古屋市東区東新町

国家消防局推薦 検定合格
ピストン式泡沫消火器

特別強制混合装置付 露倒式

特長
1. 本消火器は（特殊装備ピストン）の運動によって内側のB液と外筒のA液を振動を伴おう泵倒（1秒以内）により完全な泡沫となし放射
2. 本器は特に消火器材の使用により消火力最大にして装置率は10倍、最大射程12米、噴出時間15分

超小型軽量 "ルビン" 消防ポンプ

＝目方は各型とも30キログラム以内
1人でらくに扱える＝

発動機：ニスタ2サイクル・2気筒
水冷7〜10馬力
ポンプ：RV型（摺動2板型ロータリー）
速消を主目標とする

写真はRV1型

T型（1段タービン）

放出量と効率がRV型よりも大

ロータリー型は日本機工製、タービン型は日本機械製、超合金鋼管は東京機械製作所、その他各部品とともに信頼ある一流メーカーの手による。目下新製新型の創出と改良に努力中、一流メーカーの合作により完成度